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Model Unertainty: ExamplesCruise ontrol1 Simpli�ed speed ontrol model for a arP(s) = 1Ms + � (1)2 M: mass of the ar, �: oeÆient of road frition.3 The mass hanges with load and the frition oeÆient hanges withthe road ondition. In system design, we only know the ranges ofthese parameters: M1 � M � M2; �1 � � � �2: November 15, 2016 3 / 45



Model Unertainty: ExamplesIEEJ HDD benhmark1 Physial model of HDD~P(s) = Kps2 + A1s2 + 2�1!1s + !21 + A1s2 + 2�1!2s + !22 + � � � (2)2 Obtained via �nite element method and modal analysis3 High order resonant modes vary with manufaturing error, hundredsof thousands of HDDs ontrolled by the same ontroller.4 Control design arried out based on rigid body model P(s) = Kp=s2
November 15, 2016 4 / 45



Model Unertainty: ExamplesIEEJ HDD benhmarki fi (Hz) �i Ai1 4100 (�15%) 0.02 -1.02 8200 (�15%) 0.02 1.03 12300 (�10%) 0.02 -1.04 16400 (�10%) 0.02 1.05 3000 (�5%) 0.005 0.01 (�200% � 0%)6 5000 (�5%) 0.001 0.03 (�200% � 0%)Kp 3:744 � 109
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Model Unertainty: Examples Priniple of Robust ControlPhilosophy of Robust Control1 Sine a real physial system annot be modeled aurately, it isimpossible to desribe a real system using a single transfer funtion!2 Instead, we an determine a model alled the nominal plant, thenevaluate the di�erene between the real system and the model, i.e.,the unertainty range.3 In this way, we an obtain a set of systems that inludes the realsystem.4 If the stability and ontrol performane are guaranteed for the plantset, these properties arry over to the real system.5 In other words, the ahievable performane will be signi�antlylimited by the worst-ase unertainty beause we need to maintainthe same level of performane for all plants in the set.6 Important are the desription method of plant set and the modelingof unertainty bounds. November 15, 2016 6 / 45



Model Unertainty: Examples Category of Model UnertaintyCategory of Model Unertainty1 Parameter Unertainty2 Dynami UnertaintyUnmodeled high freq resonant modes, as shown in the �gure.Dynamis ignored deliberately for the simpli�ation of system analysisand design, partiularly the high freq dynamis.
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Model Unertainty: Examples Category of Model UnertaintySystem identi�ation and unmodeled unertainty1 Typial identi�ation method: apply sinusoidal input to the system,then measure the steady-state response of the output.2 For input sin(!t), the steady-state response is still a sinusoid withamplitude K (!) and phase angle �(!):K (!) = jG (j!)j; �(!) = argG (j!): (3)3 Changing the input freq, the freq response at a di�erent freq an bemeasured. Repeating this proess, a set of gain-phase data isobtained.
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Model Unertainty: Examples Category of Model UnertaintySystem identi�ation and unmodeled unertainty1 A transfer funtion is identi�ed by �nding a rational funtion whosefreq response mathes the measured data.2 However, in reality vibration auses mehanial attrition, so the inputfreq annot be too high. It is impossible to get the freq response inthe high freq band.3 Model unertainty in the high freq band is inevitable.
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Plant set with dynami unertainty Conrete DesriptionsExample: �(s) = P(s)� P0(s)1 Identi�ation experiments under di�erent onditions yields a numberof models Pi(j!) (i = 1; 2; � � � ).2 By alulating the gains of all Pi(j!) � P0(j!), we an �nd abounding funtion W (s) satisfyingj�i(j!)j = jPi (j!)� P0(j!)j � jW (j!)j 8!; i : (4)3 This funtion is alled the weighting funtion.4 W (s) is usually hosen as a low order stable rational funtion.5 Assuming that the set with bound W (s) is �lled with unertainty �,the unertainty an be expressed as (Æ(s): normalized unertainty)�(s) = W (s)Æ(s); jÆ(j!)j � 1 8!: (5)6 As suh, we have obtained a plant set:fP(s) j P = P0 +W Æ; kÆk1 � 1g: (6)7 It is natural to assume that the real plant is ontained in this set.November 15, 2016 10 / 45



Plant set with dynami unertainty Conrete DesriptionsPlant Set with Additive UnertaintyP(s) = P0 +�W ; k�k1 � 1: (7)1 P0(s): nominal plant2 �(s): normalized unertainty3 W (s): weighting funtion that bounds the unertainty set-g�-- W ?++q -- PFigure: Plant set with additive unertaintyNovember 15, 2016 11 / 45



Plant set with dynami unertainty Conrete DesriptionsPlant Set with Multipliative UnertaintyP(s) = (1 +�W )P0; k�k1 � 1 (8)
P -g�-- ?- ++q -W

Figure: Plant set with multipliative unertainty
November 15, 2016 12 / 45



Plant set with dynami unertainty Conrete DesriptionsPlant Set with Feedbak UnertaintyType I P(s) = P01 +�WP0 ; k�k1 � 1; (9)
P- g?�+ - -q� W ��

Figure: Plant set with Type I feedbak unertainty
November 15, 2016 13 / 45



Plant set with dynami unertainty Conrete DesriptionsPlant Set with Feedbak UnertaintyType II P(s) = P01 +�W ; k�k1 � 1: (10)
P - g?�+- -q� W ��

Figure: Plant set with Type II feedbak unertainty
November 15, 2016 14 / 45



Plant set with dynami unertainty Conrete DesriptionsExample: HDD1 Model the high freq resonant modes of HDD as a multipliativeunertainty.2 Draw the relative error ���1� P(j!)P0(j!) ��� in a Bode plot.3 Determine a minimum phase weighting funtion s.t. the gain of itsfreq response overs the relative errors. An example is the high-passtransfer funtion shown by the solid line.
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Plant set with dynami unertainty Conrete DesriptionsExample: HDD1 Real plant P(s) is ontained in the plant set:P(s) = P0(1 + �W ); P0(s) = ks2 ; k�k1 � 1:2 Region below W (s) (solid line) is treated as the unertainty region,but the real unertainty omprises only a small part of it. Thisinevitably enlarges the plant set and brings onservatism intorobustness ondition. The payo� is that the desription of unertaintyis quite simple and suitable for analysis and design.
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Plant set with dynami unertainty Modeling of Unertainty BoundSystem Identi�ation Case1 Calulate the di�erene between the freq responses of true plantP(j!) and the nominal model P0(j!) on Bode plot (solid line)2 Find a weighting funtion W (s) (dashed line) whih oversjP(j!)� P0(j!)j
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Plant set with dynami unertainty Model Redution CaseModel Redution Case1 This is the ase where a high order plant P(s) (inluding time-delay)is approximated by a low order model P0(s).2 A weighting funtion W (s) is determined on Bode plot that satis�esjP(j!)� P0(j!)j < jW (j!)j (additive unertainty)or ����1� P(j!)P0(j!) ���� < jW (j!)j ( multipliative unertainty):3 Conretely speaking, we draw the urve of the left side of theinequality, then �nd a rational transfer funtion W (s) that overs thisurve. November 15, 2016 18 / 45



Parametri SystemParametri system: mehanial example1 Mass-damper-spring system: displaement y(t), external fore u(t)_x = � 0 1� km � bm � x + � 01m � u; x = � y_y � : (11)2 Unertain parameters (m; b; k) take values in:m1 � m � m2; b1 � b � b2; k1 � k � k2: (12)3 Vetor [m b k ℄ forms a hexahedron with 8 verties in 3D spae.
ub ky m(a) System on�guration m b

k
0(b) Parameter spaeFigure: Mass-damper-spring system November 15, 2016 19 / 45



Parametri SystemParametri system: eletrial example1 Linear motor: use Lorentz fore to o�er a straight drive2 Operating priniple: plae many pairs of magnets with the samepolarity in the order of S ;N respetively on two parallel rails, thenhange the polarity of eletromagneti windings in an order ofS ! N ! S ! N periodially so as to generate a Lorentz fore todrive the stage straight forward.3 Model of linear motorP(s) = Ks(Ts + 1) = K=Ts(s + 1=T ) : (13)4 State equation (displaement and speed of the stage as the states)_x = � 0 10 � 1T � x + � 0KT � u: (14)5 Linear motor has nonlinearities suh as magneti ux leakage andnonlinear frition with rails. Cannot be desribed aurately by alinear model.6 Regard the e�et of these nonlinearities as the unertainties of timeonstant T and gain K . November 15, 2016 20 / 45



Parametri SystemParametri system: eletrial exampleBy doing numerous experiments w.r.t. di�erent speed ommands wean obtain many pairs of (T ;K ).Relation between T and K is not lear. A smart way is to enlose theexperimental data using a minimum retangle (Figure (a)).Measured data may be enlosed tightly with a polygon (Figure (b)).
T

KK2K1 T1 T20(a) Retangle approximation T
K

0(b) Tighter polytopiapproximationFigure: Measured parameters of linear motorNovember 15, 2016 21 / 45



Parametri System Polytopi Set of Parameter VetorsPolytopi Set of Parameter VetorsHow should we desribe the unertain parameter vetor [m b k ℄?1 One parameter ase: mass m takes values in an interval [m1;m2℄2 m1 and m2, the two ends of the interval, are known. The question ishow to use these verties to express an arbitrary point in the interval.3 Simplest way: take a vertex as a starting point, then add the variationrelative to this starting point. This variation is expressed as produtof m2 �m1 and a fator � 2 [0; 1℄ whih represents the variation rate.4 m 2 [m1;m2℄ an be written asm = m2 � �(m2 �m1) = �m1 + (1� �)m25 More ompat form: setting �1 = �; �2 = 1� �m = �1m1 + �2m2; �1 + �2 = 1; �i � 0: (15)6 This equation expresses a onvex ombination of the verties m1;m2.November 15, 2016 22 / 45



Parametri System Polytopi Set of Parameter VetorsPolytopi Set of Parameter Vetors1 Two-parameter ase: m 2 [m1;m2℄ and b 2 [b1; b2℄m = �1m1 + �2m2; �1 + �2 = 1; �i � 0b = �1b1 + �2b2; �1 + �2 = 1; �i � 02 Vetor [m b℄T forms a retangle with 4 verties (Figure (a)):�1 = � m1b1 � ; �2 = � m1b2 � ; �3 = � m2b1 � ; �4 = � m2b2 � : (16)
m

b �1 �3�4�2
(a) Two unertain parameters November 15, 2016 23 / 45



Parametri System Polytopi Set of Parameter VetorsPolytopi Set of Parameter Vetors1 Parameter vetor an be written as� = � mb � = � (�1 + �2)(�1m1 + �2m2)(�1 + �2)(�1b1 + �2b2) �= �1�1 � m1b1 �+ �1�2 � m1b2 �+ �2�1 � m2b1 �+ �2�2 � m2b2 � :2 Renaming the oeÆient of eah vertex�1 = �1�1; �2 = �1�2; �3 = �2�1; �4 = �2�2 ) �i � 0�1 + �2 + �3 + �4 = �1(�1 + �2) + �2(�1 + �2) = �1 + �2 = 1:3 That is, a vetor � in a retangle an always be desribed as a onvexombination of the four verties:� = �1�1 + �2�2 + �3�3 + �4�4: (17)November 15, 2016 24 / 45



Parametri System Polytopi Set of Parameter VetorsPolytopi Set of Parameter Vetors1 Three-parameter ase: parameter vetor set forms a hexahedron with8 verties
m b

k
0(b) Three unertain parameters November 15, 2016 25 / 45



Parametri System Polytopi Set of Parameter VetorsPolytopi Set of Parameter Vetors1 Convex ombination of all verties:24 mbk 35 = �1 24 m1b1k1 35+ �2 24 m1b1k2 35+ �3 24 m1b2k1 35+ �4 24 m1b2k2 35+ �5 24 m2b1k1 35+ �6 24 m2b1k2 35+ �7 24 m2b2k1 35+ �8 24 m2b2k2 35(18)�i � 0 for all i and P8i=1 �i = 1.2 A point in a polytope an always be expressed as a onvexombination of all verties. This onlusion applies to parametervetors with any dimension. November 15, 2016 26 / 45



Parametri System Matrix Polytope and Polytopi SystemMatrix Polytope and Polytopi System_x = � 0 1� km � bm � x + � 01m � u; (19)1 Parameters appear in forms of produt, ratio and reiproal.2 Question 1: an the oeÆient matrix be expressed as a onvexombination of the matries obtained at the verties?3 Mass m appears only as a reiproal 1=m and an be expressed as1m = �1 1m1 + �2 1m2 ; �1 + �2 = 1; �i � 0:4 Substitution of this equation yields� 0 1� km � bm � = �1 � 0 1� km1 � bm1 �+ �2 � 0 1� km2 � bm2 �� 01m � = �1 � 01m1 �+ �2 � 01m2 �5 Suh matrix set is alled a matrix polytope sine �1 + �2 = 1.November 15, 2016 27 / 45



Parametri System Matrix Polytope and Polytopi SystemMatrix Polytope and Polytopi System1 Question 2: an the produt b � 1m still be expressed as a onvexombination of verties?2 YES! bm = (�1 1m1 + �2 1m2 )(�1b1 + �2b2)= �1�1 b1m1 + �1�2 b2m1 + �2�1 b1m2 + �2�2 b2m2= �1 b1m1 + �2 b2m1 + �3 b1m2 + �4 b2m2�1 + �2 + �3 + �4 = 1; �i � 0.3 So, the matries an be desribed as matrix polytopes:A(m; b) = �1A(b1;m1) + �2A(b2;m1) + �3A(b1;m2) + �4A(b2;m2)B(m) = �1B(m1) + �2B(m1) + �3B(m2) + �4B(m2):4 The same is true for the parameter produt k � 1m . November 15, 2016 28 / 45



Parametri System Matrix Polytope and Polytopi SystemPower issue
1 More question: an the square of a parameter still be expressed as aonvex ombination of its verties?2 NO! m2 = (�1m1 + �2m2)2 = �21m21 + 2�1�2m1m2 + �22m22:Cross produt m1m2 appears and m2 annot be desribed only by m21and m22.3 In robust ontrol design, this power problem will be a bottlenek.

November 15, 2016 29 / 45



Parametri System Matrix Polytope and Polytopi SystemConlusion1 In summary, if � belongs to a polytope and its power higher than 2does not exist, then a system with unertain parameter vetor � anbe desribed by _x = A(�)x + B(�)u (20)y = C (�)x (21)2 Eah oeÆient matrix is a matrix polytope:A(�) = NXi=1 �iA(�i); B(�) = NXi=1 �iB(�i); C (�) = NXi=1 �iC (�i )�i � 0; NXi=1 �i = 1: (22)�i is a known vertex of parameter vetor.3 This sort of unertain systems are alled polytopi systems.November 15, 2016 30 / 45



Parametri System Norm-bounded Parametri SystemNorm-bounded Parametri SystemMass-spring-damper system:_x = � 0 1� km � bm � x + � 01m � u:1 Set the nominal parameters as (m0; k0; b0) andkm = k0m0 (1+w1Æ1); bm = b0m0 (1+w2Æ2); 1m = 1m0 (1+w3Æ3); jÆi j � 1:2 Then� 0 1� km � bm � = � 0 1� k0m0 � b0m0 �+ � 0�1 � [Æ1 Æ2 Æ3℄264 k0m0w1 00 b0m0w20 0 375� 01m � = � 01m0 �+ � 01 � [Æ1 Æ2 Æ3℄24 001m0w3 35 ; November 15, 2016 31 / 45



Parametri System Norm-bounded Parametri SystemNorm-bounded Parametri System1 State equation an be rewritten as_x = (A+ B1�C1)x + (B2 + B1�D12)u2 � = [Æ1 Æ2 Æ3℄ andA = � 0 1� k0m0 � b0m0 � ; B1 = � 01 � ; B2 = � 01m0 �C1 = �264 k0m0w1 00 b0m0w20 0 375 ; D12 = 24 001m0w3 35 :3 Size of unertainty vetor � is measured by norm.4 This kind system is alled a norm-bounded parametri system.November 15, 2016 32 / 45



Parametri System Norm-bounded Parametri SystemNorm-bounded Parametri System: a better model1 Defet of the present model: unertainty range is enlarged2 Look at km and 1m . Suppose km � k � kM; mm � m � mM3 Parameter range is the shaded square.4 But � = km , 1m is treated as unertain parameters.5 Range of � beomes kmmM � � � kMmm and the parameter region isenlarged to that enlosed by solid lines.
kkMkm

mmMmm
kMmmkmmM

Figure: Parameter spae of k and m November 15, 2016 33 / 45



Parametri System Norm-bounded Parametri SystemDesriptor form� 1 00 m � _x = � 0 1�k �b � x + � 01 � um = m0(1 + w1Æ1); k = k0(1 + w2Æ2); b = b0(1 + w3Æ3); jÆi j � 1:1 Dividing the seond row of state equation by m0, we get(I + B1�C1) _x = (A+ B1�C2)x + B2u, _x = (I + B1�C1)�1(A+ B1�C2)x + (I + B1�C1)�1B2u2 � = [Æ1 Æ2 Æ3℄ andA = � 0 1� k0m0 � b0m0 � ; B1 = � 01 � ; B2 = � 01m0 �C1 = 24 0 w10 00 0 35 ; C2 = �264 0 0k0m0w2 00 b0m0w3 375 :November 15, 2016 34 / 45



Parametri System Norm-bounded Parametri SystemLFT desription1 Set v = C1 _x ; z = �v + C2x and w = �z .2 Then, _x = Ax + B1w + B2uv = C1Ax + C1B1w + C1B2u3 Substitution of this v into z leads toz = (C2 � C1A)x � C1B1w � C1B2u:4 Norm of matrix unertainty �
Æ1Æ2

Figure: Range of parameter unertainty: square and diskNovember 15, 2016 35 / 45



Parametri System Norm-bounded Parametri SystemDesriptor form1 General model for norm-bounded parametri systemsG 8>><>>: _x = Ax + B1w + B2d + B3uz = C1x +D11w + D12d + D13ue = C2x + D21w + D22d + D23uy = C3x + D31w + D32d (23)w = �z ; k�k2 � 1: (24)2 Parameter unertainty an be time-varying�(t) 2 Rp�q ; k�(t)k2 � 1 8t � 0: (25)�G (s) wz due yFigure: General form of norm-bounded parametri systemNovember 15, 2016 36 / 45



Plant Set with Phase Information of UnertaintyPhase Information of Unertainty1 How to apture stati nonlinearity suh as dead-zone, saturation?2 Example: saturation funtion �(�) an be enlosed by two lines withslopes of k and 0 , and desribed by0 � u�(u) � ku2 8u: (26)3 Relationship between the magneti ux and the urrent in aneletromagnet is exatly suh a saturation.
u�(u) ku hu0

Figure: Saturation November 15, 2016 37 / 45



Plant Set with Phase Information of UnertaintyPhase Information of Unertainty1 More important harater: �(�) is loated in the 1st and the 3rdquadrants, namely its slope hanges between 0 and k .2 Phase angle of �(�) is zero while its gain hanges in the interval [0; k ℄.3 Partiularly useful is the information on the phase angle.4 Stribek frition also has suh a feature.
u�(u) ku hu0(a) Saturation

ufr (u) 0 ku
(b) Stribek fritionFigure: Examples of passive nonlinearity November 15, 2016 38 / 45



Plant Set with Phase Information of UnertaintyPhase Information of UnertaintyFlexible struture: torque input, veloity outputP(s) = k0ss2 + 2�0!0s + !20 + k1ss2 + 2�1!1s + !21 + � � �+ knss2 + 2�n!ns + !2nki > 0 in� phase (27)1 1st resonant mode k0ss2+2�0!0s+!20 an be identi�ed, but the 2nd andhigher resonant modes an hardly be identi�ed orretly.2 Frequeny response of a mode ss2+2�i!i s+!2i :j!!2i � !2 + j2�i!i! = 2�i!i!2 + j!(!2i � !2)(!2i � !2)2 + (2�i!i!)23 Real part is nonnegative when �i � 0, thus a PR funtion.November 15, 2016 39 / 45



Plant Set with Phase Information of UnertaintyPhase Information of Unertainty1 Therefore, the sum of high order resonant modes is also PR:k1ss2 + 2�1!1s + !21 + � � � + knss2 + 2�n!ns + !2n
−1 0 1 2 3 4 5

−2

−1

0

1

2

Figure: Nyquist diagram of a positive real transfer funtionNovember 15, 2016 40 / 45



LPV Model and Nonlinear SystemsLPV Model1 When the operating range of nonlinear systems is large, a linearapproximation an no longer be trusted.2 Meanwhile, the need is very strong to use tehniques similar to linearontrol in the ontrol of nonlinear systems.3 How to transform a nonlinear system to a quasi-linear (namely in alinear form) system?4 LPV (linear parameter varying) model_x = A(p(t))x + B(p(t))u (28)y = C (p(t))x : (29)p(t) is a time-varying parameter vetor and eah matrix is an aÆnefuntion of p(t).5 p(t) = [p1(t) p2(t)℄ aseA(p(t)) = A0 + p1(t)A1 + p2(t)A2; B(p(t)) = B0 + p1(t)B1 + p2(t)B2C (p(t)) = C0 + p1(t)C1 + p2(t)C2All matries are known exept the time-varying parameter vetor p(t).November 15, 2016 41 / 45



LPV Model and Nonlinear Systems From Nonlinear System to LPV ModelFrom Nonlinear System to LPV Model_Æ = ! � !0 (30)_! = !0M PM � !0M Pe � DM (! � !0) (31)_E 0q = � 1T 0d E 0q + xd � x 0dTd0x 0d�Vs os Æ + 1Td0Vf : (32)Pe = E 0qVsx 0d� sin Æ � V 2s2 xd � x 0dx 0d�xd� sin 2Æ: (33)
Generator

Transformer

Infinite 

bus

Vs

Vt

LT

HT

Transmission line I

Transmission line II

FFigure: Single-mahine in�nite-bus power systemNovember 15, 2016 42 / 45



LPV Model and Nonlinear Systems From Nonlinear System to LPV ModelFrom Nonlinear System to LPV Model1 Transient stability: stability in fae of short-iruit fault2 Short-iruit fault makes the ative power drop instantly, thus ausinga steep aeleration of the rotor (see Eq.(31)).3 If no exitation ontrol is ativated quikly, the generator will losesynhronism.4 In the fault phase, all states deviate from the equilibrium signi�antlyso that the linear approximation fails.5 Equilibrium of power system: (Æ0; !0; E 0q0; Vf 0).6 Goal of ontrol: restore the deviated states bak to the equilibrium,i.e. the stabilization of error statesx1 = Æ � Æ0; x2 = ! � !0; x3 = E 0q � E 0q0; u = Vf � Vf 0:November 15, 2016 43 / 45
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