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Robustness Analysis 2
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Lyapunov Stability Theory

Nonlinear system (state vector x € R")

x=f(x), x(0)#0. (1)

© How to find a condition to ensure the asymptotic stability?

© Lyapunov’s idea: not to investigate the state trajectory directly, but
to examine the variation of energy instead.

© No external energy is supplied to system (1), so the motion must stop
when the internal energy becomes zero.

Q If we know whether the internal energy converges to zero, we can
definitely judge if the state converges to the origin or not.
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Lyapunov Stability Theory

© As an energy function, we use a positive definite function called
Lyapunov function

V(x) >0 Vx#0, (2)

© If its time derivative satisfies
V(x) <0 Vx#0, (3)
then the convergence of state is guaranteed

lim x(t) =0.

t—o0
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Asymptoric Stabilty Conditon
Linear case
x = Ax, x(0)#0. (4)
© Lyapunov function

V(x) =x"Px>0 Vx#0. (5)

@ Differentiation of V(x) = x” Px along the trajectory of x = Ax

V(x) = xT Px + xT Px = (Ax)T Px + xT P(Ax)

= x" (ATP + PA)x. (6)

9 So _
V(x) <0 & ATP+PA<O. (7)

Theorem 1

Linear system (1) is asymptotically stable iff there exists a P > 0 satisfying
(7).
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Overview of Lyapunov Stability Theory Condition for State Convergence Rate

Condition for State Convergence Rate

© How to guarantee a convergence rate of state?
@ When the LMI

ATP 4+ PA+20P <0, o >0. (8)
has a positive definite solution P,
V(x) = xT(ATP + PA)x < xT(=20P)x = =20 V/(x).
© Solution of y = —20y is y(t) = e 27ty(0).
@ According to the comparison principle, V/(x) satisfies
V(x(t)) < e27tV(x(0)).
Q Since Amin(P) |x(8)[12 < xT(x)Px(t) < e 27txT(0)Px(0) <
e Amax(P) [Ix(0)]|?
IX()] < V/Amax(P)/Amin(P) [Ix(0) | e, (9)
O x(t) converges to zero at a rate higher than o.
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Quadratic Stability

© Uncertain system
x=A(0)x, x(0)#0 (10)
0 € RP is a bounded vector of uncertain parameters.
© Example: mass-spring-damper system (u = 0)

) 1
x:[ Ok b]x:A(m,b,k)x
“m T m
Parameter vector § = [m b K]'.
© Barmish’s idea: use a common quadratic function V = xTPx to
investigate the stability for the entire system set

V(x) =xTPx>0Vx#£0; V(x,0) <0Vx#0, 6. (11)

© When this is possible, the system set is said to be quadratically stable.
© Although a very strong spec, quadratic stability is quite effective in
engineering applications.
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Condition for Quadratic Stability
Condition for Quadratic Stability

@ From V(x,0) = xT (AT (8)P + PA(#))x, quadratic stability condition
is 3P > 0 satisfying
AT(8)P + PA(6) < 0 V. (12)

@ Question: how to calculate a solution P for inequality (12)7
© No general solution exists. Results known for two classes of A(6)

Example 1
x=—(24+0)x, 6> -2.
Since AT(0)P + PA(f) = —(2+0)P — P(2+ 6) = —2(2 + )P,
AT(O)P + PA(B) = —2(2+60) <0 VO € (-2, o)
w.r.t. P =1. Therefore, the stability is guaranteed.
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el R
Polytopic Systems

N
=) XiAx, x(0)#£0 (13)
i=1

© Uncertain parameters satisfy \; > 0, Z,N:l A= 1.
© Quadratic stability condition

N N
O XNA)TP+ PO NA) <0 VA
i=1 i=1

N
&> N(ATP+PA) <0 VA (14)
i=1
© This inequality must hold at all vertices of the polytope. Hence,
ATP+PA; <0 Vi=1,...,N (15)
Al'P + PA; < 0 is the condition for A\; = 1,X; =0 (j # i)
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el R
Polytopic Systems

© As all A\ are nonnegative and their sum is 1, at least one of them
must be positive.

© So when (15) holds, we have

N
> X(AT P+ PA) <0
i=1

© LMI conditions (15) at all vertices are equivalent to the quadratic
stability condition (12).
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Quadratic Stability Polytopic Systems

Example: mass-spring-damper system

@ Parameter set
1<m<2 10<k<20, 5<b<I10.

Q@ 0= [m b k|T forms a cube with eight vertices.
© Quadratic stability condition (15) has a solution

p— 1.9791 —2.8455

=| _2.8455 142301 | = ¢

© So the system is quadratically stable.

© This conclusion is very natural in view of the fact that the damping
coefficient b is positive.

. November 16,2016 11/ 25



Quadratic Stability Polytopic Systems

Example: mass-spring-damper system

© On the other hand, when the damping coefficient ranges over
0 < b < 5, the solution of (15) becomes

p— [ 0.85 0.9

—11
0.9 10.26 ] x0T ~0

which is not positive definite.

© So we cannot draw the conclusion that this system is quadratically
stable.

© In fact, this system set includes a case of zero damping. So the
system set is not quadratically stable.
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Quadratic Stability Polytopic Systems

A generalization

© Parameter-dependent Lyapunov function may reduce the
conservatism.

O A simple example:
x =A(0)x = (Ao +0A1)x, 6 € [0m, Oum].
© In view of the structure of A(#), we use a matrix
P(0) = Py + 0P;.
@ Then
P(0)A(0) = PoAo + 6>P1Ar + 0(P1Ao + PoAr).

@ Due to 62, the polytopic structure is destroyed s.t. the stability
condition cannot be reduced to the vertex conditions. In LMI
approach, so far there is no good solution for problems like this.
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© Method of Gahinet et al.:
V(x,0) = x"P(0)x, P(8) > 0.
© Its derivative is a quadratic function of 0:
V(x,0) =xT[(AJ Py + PoAo) + 02(A P1 + P1A))
+ 0(P1Ao + PoAr + AJ Py + Al Po)lx
QIf V(x, 6) is convex in 6, vertex conditions
A(0m) T P(Om) + P(0m)A(0m) < 0, A6m)T P(Om) + P(Om)A(Bn) < 0

ensures V(x,0) < 0.
© Condition for convexity
d? .
2 V(x:0) = 2xT (A Py + PiA)x >0 = A[ P+ PiA; > 0.
Q Lastly, P(f) > 0 is guaranteed by the vertex conditions
P(fm) >0, P(0u) > 0.
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Norm-Bounded Parametric Systems
© Polytopic model is very effective in robustness analysis, but not good

for design.
© Norm-bounded parametric systems

x = Ax + Bw _
M{ 2= Cx+ Dw w = Az, ||A(t)], < 1. (16)
© State equation of CLS
X=(A+BA(I - DA)'C)x, ||A(t)], < 1. (17)

© When A(t) varies freely in ||A(t)||, < 1, the invertible condition for
| — DA is ||D||, <1 (Exercise 13.2).

= o]
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Quadratic Stability Norm-Bounded Parametric Systems

Norm-Bounded Parametric Systems

Time-varying version of small-gain theorem (Exercise 13.3) yields that the

CLS (M, A) is quadratically stable w.r.t. Lyapunov function V(x) = x” Px
if there is P > 0 satisfying

ATP+PA PB CT

BTP -1 DT | <o, (18)
C D I

Theorem 2

The time-varying system (17) is quadratically stable iff there exists a
positive definite matrix P satisfying (18).
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Quadratic Stability Norm-Bounded Parametric Systems

Example: mass-spring-damper system

m= mg(]. + W1(51), k = ko(]. + W252), b= bg(]. + W3(53), |5,| <1
X k X b X
lemma -1, wp = A -1, w3 = X 1.
mo ko bo

After normalizing A = [01 02 J3], we have
me 1 myg

A:[ 0 1 ],B:[O],C:_\@ L

_k b 1
mo o 0 mws

D=-v3[w 0 0]".

O Whenl1<m<2 10< k<20, 5<b<10, (18) has a solution

p_ 1.9791 —2.8455 S0
- | —2.8455 14.2391 '

@ When 0 < b < 5, no solution exists for (18) and P.> 0.
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Quadratic Stability Norm-Bounded Parametric Systems
Proof

Sufficiency:
V(x) = xTPx 4+ xTPx = (Ax + Bw)" Px + xT P(Ax + Bw)
I x1"[ATP+PA PB][ x (19)
ol w BTP 0 wo|’

|A(t)]l, < 1implies wiw = zTATAz < zTz. As z = Cx + Dw, we get

e[ {[2 8] [ e o) 2] o

It can be proved that x # 0 in any nonzero vector {
U(x,w) <0.

X
w

} satisfying
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Quadratic Stability Norm-Bounded Parametric Systems

(18) is equivalent to (Schur’s lemma)

ATP+PA PB cT

[ L o ie o

Multiplying this inequality by [ - ] £ 0, we have
V(x) < U(x,w) < 0.

So the quadratic stability is proved.
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Quadratic Stability Norm-Bounded Parametric Systems

Necessity: when the system is quadratically stable,
V(x) <0, U(x,w)<0
hold simultaneously for x # 0. For a bounded { . ] V(x) and U(x, w)
are also bounded. Enlarging V/(x) suitably by a factor p > 0, we have
pV(x) < U(x,w) Vx #0.

Finally, absorbing p into P and renaming pP as P, we obtain
V(x) — U(x,w) <0 v[ ;‘V ] £0.

This inequality is equivalent to (18). \Y
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Passive Systems

Passive Systems

O A system is called passive if its transfer function is either PR, or
strongly PR, or strictly PR.

@ CLS: uncertainty A(s) is PR while the nominal CLS M(s) is either
strongly PR or strictly PR.

© Intuitively, the phase angle of a PR system is limited to [—90°,90°]
and that of a strongly PR system restricted to (—90°,90°). So the
phase angle of the open-loop system is always not £180° and the
stability of CLS may be expected.

A

M

Figure: Closed-loop system with a PR uncertainty
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Passive Systems

Theorem 3

Assume that the uncertainty A(s) is stable and PR. Then, the CLS is
asymptotically stable if the nominal system M(s) is stable and strongly PR.

A

M

Figure: Closed-loop system with a PR uncertainty
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(Proof) Let the state equations of M and A be

A(S) ox1 = Aixg + Bl(—y), u= Cixy + Dl(—y)
M(s) 1 xp = Axxp+ Bou, y = Goxo + Dyu.

According to PR lemma and strongly PR lemma, 4 P > 0, Q > 0 satisfying

ATP+PA, PB o ¢
- <
[ BfP 0 G Di+D] | = 0 (21)
ATQ + QA QB, 0o
[ BI Q 0 ¢ DDy | <0 (22)

Then, for Vi(x1) = x/ Px1 > 0, Va(x2) = xJ @xa > 0 we have
Vi) < —uTy —yTu, Va(xo) <uly+yTu.
Lyapunov candidate of CLS: V(x1,x2) = Vi(x1) + Va(x2)
V(x1, %) = Vi(x1) + Va(x2) < 0

Therefore, the CLS is asymptotically stable.
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Passive Systems

Theorem 4

Assume that the uncertainty A(s) is stable and PR. The CLS is
asymptotically stable if the nominal system M(s) is stable and there is a
constant € > 0 such that M(s — €) is PR.

F A

M

Figure: Closed-loop system with a PR uncertainty
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(Proof) The proof is similar to that of Theorem 3. The only difference is
to replace the strongly PRness of M(s) by (modified) strictly PRness, i.e.

(A+e)TQ+ QA2 +€l) @By 0 Cf
2 2]-[8 %<0 o

Va(xa) < uly +yTu—2ex) Qo (24)
So again, the Lyapunov candidate V/(xi,x2) = Vi(x1) + Vo(x2) satisfies
V(x1, %) = Vi(x1) + Va(xa) < —2ex] Qx

When x; is not identically zero, V/(x1, x2) strictly decreases.
When x3(t) =0, y = Coxp = 0. Substituting y = 0 into x;, we have

x1 = A1xy = Xl(t) —0

because A; is stable. Therefore, the CLS is asymptotically stable.
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