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Overview of Lyapunov Stability TheoryLyapunov Stability TheoryNonlinear system (state ve
tor x 2 Rn )_x = f (x); x(0) 6= 0: (1)1 How to �nd a 
ondition to ensure the asymptoti
 stability?2 Lyapunov's idea: not to investigate the state traje
tory dire
tly, butto examine the variation of energy instead.3 No external energy is supplied to system (1), so the motion must stopwhen the internal energy be
omes zero.4 If we know whether the internal energy 
onverges to zero, we 
ande�nitely judge if the state 
onverges to the origin or not.November 16, 2016 3 / 25



Overview of Lyapunov Stability TheoryLyapunov Stability Theory1 As an energy fun
tion, we use a positive de�nite fun
tion 
alledLyapunov fun
tion V (x) > 0 8 x 6= 0: (2)2 If its time derivative satis�es_V (x) < 0 8x 6= 0; (3)then the 
onvergen
e of state is guaranteedlimt!1 x(t) = 0:
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Overview of Lyapunov Stability Theory Asymptoti
 Stability ConditionLinear 
ase _x = Ax ; x(0) 6= 0: (4)1 Lyapunov fun
tion V (x) = xTPx > 0 8x 6= 0: (5)2 Di�erentiation of V (x) = xTPx along the traje
tory of _x = Ax_V (x) = _xTPx + xTP _x = (Ax)TPx + xTP(Ax)= xT (ATP + PA)x : (6)3 So _V (x) < 0 , ATP + PA < 0: (7)Theorem 1Linear system (1) is asymptoti
ally stable i� there exists a P > 0 satisfying(7). November 16, 2016 5 / 25



Overview of Lyapunov Stability Theory Condition for State Convergen
e RateCondition for State Convergen
e Rate1 How to guarantee a 
onvergen
e rate of state?2 When the LMI ATP + PA+ 2�P < 0; � > 0: (8)has a positive de�nite solution P ,_V (x) = xT (ATP + PA)x < xT (�2�P)x = �2�V (x):3 Solution of _y = �2�y is y(t) = e�2�ty(0).4 A

ording to the 
omparison prin
iple, V (x) satis�esV (x(t)) < e�2�tV (x(0)):5 Sin
e �min(P) kx(t)k2 � xT (x)Px(t) < e�2�txT (0)Px(0) �e�2�t�max(P) kx(0)k2kx(t)k <p�max(P)=�min(P) kx(0)k e��t ; (9)6 x(t) 
onverges to zero at a rate higher than �. November 16, 2016 6 / 25



Quadrati
 StabilityQuadrati
 Stability1 Un
ertain system _x = A(�)x ; x(0) 6= 0 (10)� 2 Rp is a bounded ve
tor of un
ertain parameters.2 Example: mass-spring-damper system (u = 0)_x = � 0 1� km � bm � x = A(m; b; k)xParameter ve
tor � = [m b k ℄T .3 Barmish's idea: use a 
ommon quadrati
 fun
tion V = xTPx toinvestigate the stability for the entire system setV (x) = xTPx > 0 8x 6= 0; _V (x ; �) < 0 8x 6= 0; �: (11)4 When this is possible, the system set is said to be quadrati
ally stable.5 Although a very strong spe
, quadrati
 stability is quite e�e
tive inengineering appli
ations. November 16, 2016 7 / 25



Quadrati
 Stability Condition for Quadrati
 StabilityCondition for Quadrati
 Stability1 From _V (x ; �) = xT (AT (�)P + PA(�))x , quadrati
 stability 
onditionis 9P > 0 satisfying AT (�)P + PA(�) < 0 8�: (12)2 Question: how to 
al
ulate a solution P for inequality (12)?3 No general solution exists. Results known for two 
lasses of A(�)Example 1 _x = �(2 + �)x ; � > �2:Sin
e AT (�)P + PA(�) = �(2 + �)P � P(2 + �) = �2(2 + �)P,AT (�)P + PA(�) = �2(2 + �) < 0 8� 2 (�2; 1)w.r.t. P = 1. Therefore, the stability is guaranteed. November 16, 2016 8 / 25



Quadrati
 Stability Polytopi
 SystemsPolytopi
 Systems _x = ( NXi=1 �iAi)x ; x(0) 6= 0 (13)1 Un
ertain parameters satisfy �i � 0; PNi=1 �i = 1.2 Quadrati
 stability 
ondition( NXi=1 �iAi)TP + P( NXi=1 �iAi) < 0 8�i, NXi=1 �i(ATi P + PAi ) < 0 8�i : (14)3 This inequality must hold at all verti
es of the polytope. Hen
e,ATi P + PAi < 0 8i = 1; : : : ;N (15)ATi P + PAi < 0 is the 
ondition for �i = 1; �j = 0 (j 6= i)November 16, 2016 9 / 25



Quadrati
 Stability Polytopi
 SystemsPolytopi
 Systems1 As all �i are nonnegative and their sum is 1, at least one of themmust be positive.2 So when (15) holds, we haveNXi=1 �i (ATi P + PAi) < 03 LMI 
onditions (15) at all verti
es are equivalent to the quadrati
stability 
ondition (12).
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Quadrati
 Stability Polytopi
 SystemsExample: mass-spring-damper system_x = � 0 1� km � bm � x :1 Parameter set1 � m � 2; 10 � k � 20; 5 � b � 10:2 � = [m b k ℄T forms a 
ube with eight verti
es.3 Quadrati
 stability 
ondition (15) has a solutionP = � 1:9791 �2:8455�2:8455 14:2391 � > 0:4 So the system is quadrati
ally stable.5 This 
on
lusion is very natural in view of the fa
t that the damping
oeÆ
ient b is positive. November 16, 2016 11 / 25



Quadrati
 Stability Polytopi
 SystemsExample: mass-spring-damper system1 On the other hand, when the damping 
oeÆ
ient ranges over0 � b � 5, the solution of (15) be
omesP = � 0:85 0:90:9 10:26 �� 10�11 � 0whi
h is not positive de�nite.2 So we 
annot draw the 
on
lusion that this system is quadrati
allystable.3 In fa
t, this system set in
ludes a 
ase of zero damping. So thesystem set is not quadrati
ally stable. November 16, 2016 12 / 25



Quadrati
 Stability Polytopi
 SystemsA generalization1 Parameter-dependent Lyapunov fun
tion may redu
e the
onservatism.2 A simple example:_x = A(�)x = (A0 + �A1)x ; � 2 [�m; �M ℄:3 In view of the stru
ture of A(�), we use a matrixP(�) = P0 + �P1:4 Then P(�)A(�) = P0A0 + �2P1A1 + �(P1A0 + P0A1):5 Due to �2, the polytopi
 stru
ture is destroyed s.t. the stability
ondition 
annot be redu
ed to the vertex 
onditions. In LMIapproa
h, so far there is no good solution for problems like this.November 16, 2016 13 / 25



Quadrati
 Stability Polytopi
 Systems1 Method of Gahinet et al.:V (x ; �) = xTP(�)x ; P(�) > 0:2 Its derivative is a quadrati
 fun
tion of �:_V (x ; �) =xT [(AT0 P0 + P0A0) + �2(AT1 P1 + P1A1)+ �(P1A0 + P0A1 + AT0 P1 + AT1 P0)℄x3 If _V (x ; �) is 
onvex in �, vertex 
onditionsA(�m)TP(�m)+P(�m)A(�m) < 0; A(�M)TP(�M)+P(�M)A(�M) < 0ensures _V (x ; �) < 0.4 Condition for 
onvexityd2d�2 _V (x ; �) = 2xT (AT1 P1 + P1A1)x � 0 ) AT1 P1 + P1A1 � 0:5 Lastly, P(�) > 0 is guaranteed by the vertex 
onditionsP(�m) > 0; P(�M) > 0: November 16, 2016 14 / 25



Quadrati
 Stability Norm-Bounded Parametri
 SystemsNorm-Bounded Parametri
 Systems1 Polytopi
 model is very e�e
tive in robustness analysis, but not goodfor design.2 Norm-bounded parametri
 systemsM � _x = Ax + Bwz = Cx + Dw w = �z ; k�(t)k2 � 1: (16)3 State equation of CLS_x = (A+ B�(I � D�)�1C )x ; k�(t)k2 � 1: (17)4 When �(t) varies freely in k�(t)k2 � 1, the invertible 
ondition forI � D� is kDk2 < 1 (Exer
ise 13.2).�M �- zwFigure: Parametri
 system November 16, 2016 15 / 25



Quadrati
 Stability Norm-Bounded Parametri
 SystemsNorm-Bounded Parametri
 SystemsTime-varying version of small-gain theorem (Exer
ise 13.3) yields that theCLS (M;�) is quadrati
ally stable w.r.t. Lyapunov fun
tion V (x) = xTPxif there is P > 0 satisfying24 ATP + PA PB CTBTP �I DTC D �I 35 < 0; (18)Theorem 2The time-varying system (17) is quadrati
ally stable i� there exists apositive de�nite matrix P satisfying (18). November 16, 2016 16 / 25



Quadrati
 Stability Norm-Bounded Parametri
 SystemsExample: mass-spring-damper systemm = m0(1 + w1Æ1); k = k0(1 + w2Æ2); b = b0(1 + w3Æ3); jÆi j � 1w1 = mmaxm0 � 1; w2 = kmaxk0 � 1; w3 = bmaxb0 � 1:After normalizing � = [Æ1 Æ2 Æ3℄, we haveA = � 0 1� k0m0 � b0m0 � ; B = � 01 � ; C = �p3264 k0m0w1 b0m0w1k0m0w2 00 b0m0w3 375D = �p3 � w1 0 0 �T :1 When 1 � m � 2; 10 � k � 20; 5 � b � 10, (18) has a solutionP = � 1:9791 �2:8455�2:8455 14:2391 � > 0:2 When 0 � b � 5, no solution exists for (18) and P > 0.November 16, 2016 17 / 25



Quadrati
 Stability Norm-Bounded Parametri
 SystemsProofSuÆ
ien
y:_V (x) = _xTPx + xTP _x = (Ax + Bw)TPx + xTP(Ax + Bw)= � xw �T � ATP + PA PBBTP 0 � � xw � : (19)k�(t)k2 � 1 implies wTw = zT�T�z � zT z . As z = Cx + Dw , we getU(x ;w) = � xw �T �� 0 00 I �� � CTDT � [C D℄�� xw � � 0: (20)It 
an be proved that x 6= 0 in any nonzero ve
tor � xw � satisfyingU(x ;w) � 0. November 16, 2016 18 / 25



Quadrati
 Stability Norm-Bounded Parametri
 Systems(18) is equivalent to (S
hur's lemma)0 > � ATP + PA PBBTP �I �+ � CTDT � [C D℄= � ATP + PA PBBTP 0 ���� 0 00 I �� � CTDT � [C D℄� :Multiplying this inequality by � xw � 6= 0, we have_V (x) < U(x ;w) � 0:So the quadrati
 stability is proved.
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Quadrati
 Stability Norm-Bounded Parametri
 SystemsNe
essity: when the system is quadrati
ally stable,_V (x) < 0; U(x ;w) � 0hold simultaneously for x 6= 0. For a bounded � xw �, _V (x) and U(x ;w)are also bounded. Enlarging _V (x) suitably by a fa
tor � > 0, we have� _V (x) < U(x ;w) 8x 6= 0:Finally, absorbing � into P and renaming �P as P , we obtain_V (x)� U(x ;w) < 0 8 � xw � 6= 0:This inequality is equivalent to (18). rNovember 16, 2016 20 / 25



Passive SystemsPassive Systems1 A system is 
alled passive if its transfer fun
tion is either PR, orstrongly PR, or stri
tly PR.2 CLS: un
ertainty �(s) is PR while the nominal CLS M(s) is eitherstrongly PR or stri
tly PR.3 Intuitively, the phase angle of a PR system is limited to [�90Æ; 90Æ℄and that of a strongly PR system restri
ted to (�90Æ; 90Æ). So thephase angle of the open-loop system is always not �180Æ and thestability of CLS may be expe
ted.�My u�Figure: Closed-loop system with a PR un
ertaintyNovember 16, 2016 21 / 25



Passive Systems Strongly PR 
asePassive SystemsTheorem 3Assume that the un
ertainty �(s) is stable and PR. Then, the CLS isasymptoti
ally stable if the nominal system M(s) is stable and strongly PR.�My u�Figure: Closed-loop system with a PR un
ertaintyNovember 16, 2016 22 / 25



Passive Systems Strongly PR 
ase(Proof) Let the state equations of M and � be�(s) : _x1 = A1x1 + B1(�y); u = C1x1 + D1(�y)M(s) : _x2 = A2x2 + B2u; y = C2x2 + D2u:A

ording to PR lemma and strongly PR lemma, 9 P > 0;Q > 0 satisfying� AT1 P + PA1 PB1BT1 P 0 �� � 0 CT1C1 D1 + DT1 � � 0 (21)� AT2 Q +QA2 QB2BT2 Q 0 �� � 0 CT2C2 D2 +DT2 � < 0 (22)Then, for V1(x1) = xT1 Px1 > 0; V2(x2) = xT2 Qx2 > 0 we have_V1(x1) � �uT y � yTu; _V2(x2) < uT y + yTu:Lyapunov 
andidate of CLS: V (x1; x2) = V1(x1) + V2(x2)_V (x1; x2) = _V1(x1) + _V2(x2) < 0Therefore, the CLS is asymptoti
ally stable. November 16, 2016 23 / 25



Passive Systems Stri
tly PR 
asePassive SystemsTheorem 4Assume that the un
ertainty �(s) is stable and PR. The CLS isasymptoti
ally stable if the nominal system M(s) is stable and there is a
onstant � > 0 su
h that M(s � �) is PR.�My u�Figure: Closed-loop system with a PR un
ertaintyNovember 16, 2016 24 / 25



Passive Systems Stri
tly PR 
ase(Proof) The proof is similar to that of Theorem 3. The only di�eren
e isto repla
e the strongly PRness of M(s) by (modi�ed) stri
tly PRness, i.e.� (A2 + �I )TQ +Q(A2 + �I ) QB2BT2 Q 0 �� � 0 CT2C2 0 � � 0: (23)_V2(x2) � uT y + yTu � 2�xT2 Qx2 (24)So again, the Lyapunov 
andidate V (x1; x2) = V1(x1) + V2(x2) satis�es_V (x1; x2) = _V1(x1) + _V2(x2) � �2�xT2 Qx2When x2 is not identi
ally zero, V (x1; x2) stri
tly de
reases.When x2(t) � 0, y = C2x2 = 0. Substituting y = 0 into _x1, we have_x1 = A1x1 ) x1(t)! 0be
ause A1 is stable. Therefore, the CLS is asymptoti
ally stable.November 16, 2016 25 / 25
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