Chapter 19

Regional Pole Placement
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Motivation

© In the modern control theory, the so-called pole placement is to place
the poles to fixed points in the complex plane.

© However, it is impossible to fix the closed-loop poles to specific points
when the system has uncertainty.

© Nevertheless, it is still possible to place the closed-loop poles in a
region.
© From the viewpoint of robust performance, the response quality of

the CLS is guaranteed if the closed-loop poles can be locked in a
prescribed region.
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Convex Region and Its Characterization Relationship between Control Performance and Pole Location

Performance and Pole Location

© Prototype 2nd-order system
w

= 24 2Cwps + w2’

@ Poles of G(s): p= —Cwp £ jwpy/1 — (2
O Rise time is proportional to 1/w,, so w, must be greater than a
certain number r > 0.

G(s) 0<(¢<1 (1)

© R > |p| necessary to avoid large input.

@ Therefore,
r<lpl=ws <R

O Let the damping ratio corresponding to the greatest allowable
overshoot be (p, the damping ratio must satisfy

¢ > Cp-
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Convex Region and Its Characterization Relationship between Control Performance and Pole Location

Performance and Pole Location

© angle between the poles and the real axis must satisfy

V11— 1 1
tanf = Y—> = — 1< — -1
¢ ¢? _\/Cﬁ
1
= 0 <0, := arctan —2—1.
Cp

© To shorten the settling time, we need, w.r.t. the required convergence
rate o
%(p) = —(wp < —0.

Basically this can be ensured by adjusting r.
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Convex Region and Its Characterization Relationship between Control Performance and Pole Location

Performance and Pole Location

Re

Figure: Desirable pole region for 2nd-order systems
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U=
Characterization of LMI Region

@ Half-plane: R(s) < —o
x< -0 z4+7z< —20. (2)

@ Disk: centered at (—c, 0) and with a radius r

(z+c)(z+c)<r2(:)—r—(?+c)-_ir-(z+c)<0

—-r z+c
<Z>[?—|—C —r ]<0

@[_Cr Cr]+z[g (1)]—1-7[(1) 8]<0. (3)
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LMI Region and Its Characterization Typical LMI Regions

Characterization of LMI Region

@ Sector: |argz — 7| < 0

I
—X

& (xsin6)?

< tanf < xsinf < —|y|cosf < 0

> (ycosf)?, xsinf <0
o] e ] <o
Substitution of x = (z 4+ Z)/2, jy = (z — Z)/2 leads to
[ (z+7Z)sinf (z—

Z) cos 6 <0
—(z—2)cosf (z+Z)sinb

sin@ cosf i3 sin@ —cos@ <0
z —cosf sinf z cosf sind )
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U=
Definition of LMI Region

© LMI region D: the set of complex number z characterized by

D={zeC|fp(z) <0} (5)
fp(z) =L+ zM+zMT. (6)

@ Matrix fp(z): the characteristic function
© L and M are both square matrices.
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Condition for Regional Pole Placement

Condition for Regional Pole Placement

© System
x = Ax. (7)
@ Characteristic function
fo(z) = L+ zM +zMT (8)
© Characteristic matrix
Mp(A,X) =L@ X +M® (AX) + M @ (AX)T. (9)
@ Replacement relation between fp(z) and Mp(A, X)
(1, z, 2) & (X, AX, (AX)T). (10)

Theorem 1
All eigenvalues of matrix A are located in an LMI region D iff 3X such that
Mp(A, X) < 0. (11)
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Condition for Regional Pole Placement

Example 1

© Consider a disk centered at (—c,0) and with radius r.

@ Characteristic function

O AT P ]

© Condition
Mp(A,X) =Lo X +M® (AX) + MT @ (AX)T
[ X T 0 AX T 0 0
Tl X =X 0 0 (AX)T 0
_ —rX cX + AX <0
T X+ (AX)T —rX '

|

(12)

4
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Relation between fp(z) and Mp(A, X)

@ Replacement relation between fp(z) and Mp(A, X):
(1, z, 2) & (X, AX, (AX)T). (13)

Example 2
@ Sector in the left half plane and with an angle 6:

fD(z):z[ sin@ cosﬁ] 7[sm@ —cosﬁ].

—cosf xsinf cosf sinf
@ Condition for pole location of x = Ax:

T e _ xaAT
MD(A,X):[ (AX +XA")sinf  (AX — XA )cosO] 0.

—(AX — XAT)cos (AX + XAT)sinf

(14)

4
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Condition for Regional Pole Placement

Example 3

0 1 .
A_[_lo _6], AA) = -3 £

@ Eigenvalues of matrix A are contained in 3 regions:
(1) disk: ¢ =0, r =5; (2) half plane: o = 2; (3) sector: 8 = /4

@ Solutions to the corresponding LMIs

0.1643 —0.2756] 0, XZZ[ 0.1567 —0.3532 50

X = [ —0.2756  0.8687 —0.3532  1.0106

0.1335 —0.2187
Xs = [ —0.2187  0.4799 ] 0

The same conclusion is obtained.

@ But when o = 4, system poles are not in the half plane. (11) has no
positive definite solution.
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Composite LMI Region

Composite LMI Region
Corollary 1

All eigenvalues of matrix A are in a composite region D1 N D, iff 3X > 0
satisfying Mp, (A, X) < 0 and Mp,(A, X) < 0.
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Composite LMI Region

Example 4
Eigenvalues of system matrix

0 1
A‘[—m —6]

are located in the following 3 regions respectively:
(1) disk: ¢ =0, r =5; (2) half plane: o = 2; (3) sector: 0 = /4

Intersection of these 3 regions is the shaded part of the figure on the
preceding slide. Solving for the common solution of those three LMIs, we

obtain
X — 18.357 —38.4586 50

- | —38.4586 120.2923 '

Hence the same conclusion is obtained.
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Feedback Controller Design

O Plant

x=Ax+ Bu, y=Cx (15)
Q@ Controller

xk = Akxk + Bky, u= Cxxk + Dky (16)

© Closed-loop system

X X

1 _TA B

z w

in which
A — A+ BDk(C ByCk
cT Bk G Ak '
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Feedback Controller Design

Design condition
Mp(Ac,P) =L@ P+ M® (AP)+ M" @ (A.P)T <0 (18)
As P = I'I2I'|f1, multiplication of I'IlT, My from both sides yields
Lo NI PM) +Me (N] AP +MT @ (N]APM)T <0, (19)
Variable change

A = NAKMT + NByCX + YBCkMT + Y(A+ BDxC)X

B = NBx + YBDk, C = CkMT + DxCX, D = Dk (20)
X AX + BC A+ BDC
T _nT _ T _
nlpnl_nlnz_[ | Y],nlAanl_[ N VA 4 BC
(21)
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Feedback Controller Design

Final design condition:

X | AX +BC A+ BDC
L®[/ Y]+M®[ A YA+]BC]
T
AX + BC A+ BDC
-
+M ®[ A YA—HB%C] 0. (22)
In addition, P > 0 is equivalent to
X |
[ | Y] > 0. (23)
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Design Example: Mass-Spring System

. 0 1 0
X_[—100 0]"*[1]”'
Composite region:

(1) disk: ¢ =0, r =5; (2) half plane: o =2; (3) sector: 8 =7/4
Solution to Egs. (22) and (23), all positive definite

X — 85.6357  —189.7711 Y — 629.9055 —189.7711
~ | —189.7711 629.9055 |’ = | —189.7711  85.6357

Controller
90s2 + 1087s + 13023

K(s) = 271228505 — 128.008"
Poles of the closed-loop system

—2.8568 +j1.1716, —3.2861 + j1.7570

All are located in the three specified LMI regions.
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e
Polytpoic System

Mass-spring-damper system (u = 0)

: [ 0 1 ]
X = b X.
B T m

p1 = k/m, po =b/m. Then

{5 3] a5 s]en [0 S ]p

A is an affine function of parameter vector p = [p1 p2]”.

3>

General form
x = A(p)x, x(0)#0. (24)
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Analysis of Robust Pole Placement Polytpoic System

Robust Regional Pole Placement

Corollary 2

All eigenvalues of matrix A(p) are located in LMI region D iff 3X(p) > 0
satisfying

Mp(A(p), X(p)) < 0. (25)

© X(p) depends on parameter vector p. However, nobody knows the
relationship between X(p) and p so far.

@ We follow the philosophy of quadratic stability and fix X(p) as a
constant matrix.

© Sufficient condition:
Mp(A(p), X) <0 (26)

has a real positive definite solution.
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Analysis of Robust Pole Placement Polytpoic System

Simplification

Polytopic system

N N

Alp) = piAi, > pi=1, pi>0. (27)
i=1

i=1
Corollary 3
For a matrix polytope A(p), if 3X > 0 satisfying
Mp(Ai, X) <0 Yi=1,...,N, (28)

then the eigenvalues of A(p) are all located in the LMI region D.
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Analysis of Robust Pole Placement Polytpoic System

Example: mass-spring-damper system

@ m=1, k=23, friction b

0 1
A_[_3 _b],b>0.

@ LMI region: disk centered at (—c,0) = (—2.5,0) and with a radius
r=2.
o Eigenvalues of matrix A are —2Evb =12 V2b2712.
@ Complex roots (b < \/ﬁ) the condition is
2 JO 2\’ 2_ 2
r’ > <c—9> + (Lb> = b>67£+3:2.1.

2 2

@ Real roots, the condition becomes

d+Vvb>—12
2

3
c+r> = b<c+r+—— =5.167.
c+r

@ Corollary 3 succeeds only when b € [2.3, 4], conservative.
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Analysis of Robust Pole Placement Norm-Bounded Parametric System

Norm-Bounded Parametric System

X = Aax = (A+BA(I - DA)IC)x, |A(t)], < 1. (29)
Equivalent to the CLS made up by a nominal system M(s)

x = Ax + Bw
M{Z:CX+DW (30)
and a norm-bounded parameter uncertainty A(t)

w=2z, A, <1

In addition, as A(t) varies arbitrarily in the range of ||A(t)||, <1, the
matrix / — DA is invertible iff || D, < 1.

= o
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Norm-Bounded Parametric System
A Sufficient Condition

Theorem 2

If there exist matrix P > 0, Q > 0 satisfying LMI

Np(A, P) M; ® (PB) (M,@)® CT

M ®(BTP) -Q®I QuDT <0 (31)
(@MY= C Q®D QI
Np(A,P)=L®P+M® (PA)+M" @ (PA)T, (32)

then poles of the uncertain system (29) are all located inside the region D.
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Analysis of Robust Pole Placement Norm-Bounded Parametric System
An Example

© LMI region: disk with characteristic function

fD(z):[_cr _Cr]+z[8 (1)]—1-2-(1) 8]
Q@ Condition
—tP cP+PA PB 0 ]
CP;T?E,TP _SP ° g; <0. (33)
0 c D —I|
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IR
On Polytopic Systems

© System with only one uncertain parameter
x = (01A1 + 0A)x + Bu, y =Cx; 61,00 >0, 61 +0>=1. (34)
@ Controller
xk = Akxk + Bky, u= Cxxkx + Dky, (35)

© Condition for pole placement in an LMI region D:

L®[X / ]+H6{M®[AX+BC A+BDC]}<0

Y A YA+ BC
X
MEIEC

have a solution.
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IR
On Polytopic Systems

© Unknown variables

A = NAKMT + NBy CX + YBCxkMT + Y(01 A1 + 62A; + BDK C)X
B = NBx + YBDk, C= CkM" + DxCX, D = D.

Q Although A = 61A; + 62A, in which

Ay = NAKMT + NBx CX + YBCkMT + Y(A; + BDkC)X
Ay = NAKMT + NBxCX + YBCkMT + Y (A, + BDKC)X,

it is not guaranteed that they have a common solution when
calculating Ak from (Ag, Ap).
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IR
On Polytopic Systems

© However, when 61,6, are known, we may use a controller with
Ak = 01Ak1 + 02AK>.
@ In this case,

Ay = NAKIMT + NBx CX + YBCkMT + Y(A; + BDC)X
Ay = NAoMT 4+ NBy CX + YBCkMT + Y(Ay + BDi C)X

and (Ak1, Akz) can be inversely calculated from (A;, Ap).

© This is the so-called gain-scheduling method to be introduced in the
next chapter.
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Robust Design of Regional Pole Placement Design for Norm-Bounded Parametric System

Design for Norm-Bounded Parametric System

© Norm-bounded parametric system

X:AX+81W+BQU

G z=Cx+ Diyiw + Diru (36)
y=Gx+ Duw
w=2Az, |Al,<1. (37)
Q@ Controller K:
xx = Akxk + Bky (38)

u= Cxxk + Dy

© Task: robustly place the closed-loop poles inside an LMI region D
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Robust Design of Regional Pole Placement Design for Norm-Bounded Parametric System
Sufficient Condition

[ Lo (N{M) +He{M @ (M AcMy)} My ®(N]B) Mo (N{CT)
M @ (BITT) —1 I DT

i M ® (CcMy) I ® D _

<0 (39)

X

1y ] > 0. (40)

have a solution, in which

X 1 AX + B,C A+ BDC
T _ T _ 2 2 2
”1”2_[ / Y]’ nzAcnl_[ A YA+ BG
By + B.DD
ny BC:[ YB. 4 BDy. ] CeMy =[G X + D€ G + DioDG]

A= NAKMT + NBy CoX + YB,Ck MT + Y (A + B,Di G)X
B = NBx + YB,Dk, C = CkMT + D CoX, D = Dy
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Robust Design Example: Mass-Spring-Damper System
Robust Design Example: Mass-Spring-Damper System

o m=1kg, be[0, 2] Ns/m, k € [80, 120] N/m

xz[_ok _1b]x+[(1)]u, y=[ 0.

@ Uncertain parameters

k =ko(l+wid), b=bo(l+ wadp), [6]<1

ka me
ko =100, bo =1, w; = —% _1=0.2, wp = —=X _1=1.
ko bO

@ Normalizing the uncertain matrix A = [6; 7], we get

T o0 1 o To - kow, 0
A_[—ko —bO]’Bl_BZ_[l]’CI_ fz[ 0 boWz]

0
G =1 0], Dy =D = [

0],D21:0
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Robust Design of Regional Pole Placement Robust Design Example: Mass-Spring-Damper System

© Design spec: place the poles of CLS inside the intersection of a disk
(c =0, r =15) and a half plane (o =1)

Q@ Controller
—66s2 — 4055 + 13315

K(s) = .
(5) = 21 304185 7 277.62

© CLS poles (all located in the given region)
¢ Nominal

(—6.0189 =+ j8.717, —9.6886 + j5.9056)

o Four vertices

(—9.3103 £ j7.3826, —5.8972 £ j5.3125)

(—9.2397 + j9.562, —6.9678 + j1.3258)

(—3.9167 + j10.3592, —11.2458 & j6.0098)
(—5.8157 + j10.5058, —10.3918 = j5.5414)

© K(s) is very sensitive to noise because K(o0) = —66

© Noise reduction should be supplemented, a multiobjective design.
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