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H oo Norm of Transfer Function Definition

H.. Norm of Transfer Function

©Q Transfer matrix

© Hoo norm: maximal amplitude of freq. response
|G|l := max|G(jw)] SISO (2)
w
1G]l := maxomax(G(jw)) MIMO (3)
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Relation with Input and Output: 1

lyll
Gl = sup 2, (4)
lull,0 [1ull2

Q ||ylly/llull,: ratio of input and output energies. Its supremum for all
energy-bounded input u(t) is the Hoo norm. |Gl

@ To lower the output response y(t) to a energy-bounded disturbance
u(t), we need

1G]l — 0.

© To make the input-output ratio less than a given value v >, it is
sufficient to guarantee

1G]l < -
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Relation with Input and Output: 2

o

o

Instead of energy bounded, a disturbance is persistent whose energy is
unbounded. New viewpoint needed.

SISO system: maximum amplitude of system’s frequency response to
unit impulse input

1Gllo = sup|G(jw)

MIMO system

1Glloe = sup [Gully, NGulle =supllGUw)ull,. (5)
ueCm w
llufl<1
Complex space C™ is a space of impulse vector signals containing
time-delay. So, ||GJ|,, is the maximum amplitude of all the frequency

responses w.r.t. unit impulse vectors whose elements are imposed at
arbitrary instants.
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Weighting Function vs Dynamics of Disturbance
Weighting Function vs Disturbance

© Disturbance has dynamics W(s). Then y(s) = G(s)W(s).
@ Suppression of the disturbance response

17lloe < NNGWloo < (6)
@ Even when only an upper bound |W (jw)| is known,
|d(w)| < W(w)| Y w,
disturbance is still suppressed if || GW/||,, is minimized because

|ea|_<newi..

ldl I

3
o)

©

N\
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H oo Control Problem

An example

Example 1

Ref tracking: plant P(s) =1/s, controller K(s) = k, ref. input
r(t) = 1(t). Seek a gain k s.t. the tracking error e(t) satisfies the
performance specification sup,, |é(jw)| < 0.1.

(Solution) r(t) is the unit impulse response of W(s) =1/s. Hence, e(t) becomes
the unit impulse response of the weighted transfer function WS. Therefore,
sup,, |é(jw)| = ||WS]|, in which

1 s
1+ PK  s+k

S(s) =
k > 0 is necessary for the internal stability, Then,

1
TR L R P
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H oo Control Problem

H o control problem

© For any given v > 0, design a controller satisfying ||Haw ||, < 7.
Q (Al): (A, By) is stabilizable and ((,, A) is detectable.

Al B B
Al B
G(s) = [ D ] =| G |Du D (7)
G | Doy 0
—Z ] DAL

(et

Figure: Generalized feedback system

. December 13,2016 8 / 30



LMI Solution 1: Variable Elimination

Solution 1: Variable Elimination

Ny =[G Da]y, Nx =[B] D).

Theorem 1

Assume (Al). The Hoo problem ||Haw ||
3X >0,Y > 0 satisfying

< 7 has a solution iff

. AX + XAT xcT B
T 1
’\SX IO ] G X —vl  Dp [’\g‘ IO ]<0 (8)
Ny BlT D17i _,YI Ny
- YA+ ATY vB, C
NT L N
o IO ] B/Y  —yl DJ [ oY ,0 ] <0 (9
Nz Cl D11 —’yl Nz
/ /
| Y] >0, rank [ / Y] < n+ ng. (10)
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LMI Solution 1: Variable Elimination

(Proof) CLS: H,w(s) = (Ac, Be, Cc, De).

According to the bounded-real lemma, Hoo problem is solvable iff 3P > 0
satisfying

AP+ PA. PB. CJ

BIP -yl DI | <o. (11)
Cc D, —~l
OR equivalently
Q+ETKF+FTKTE<O (12)
A'P+PA PB, C, ' PB,
[Q ET] B/P —yl D 0 K:[DK CK]_
F .G Du —yl Dp | Br Ax
C, Dy 0
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LMI Solution 1: Variable Elimination

Owing to Theorem 3.1, (12) is equivalent to
ETQE, <0, F[QF. <o. (13)
Decomposition of P
P:|:Y *:|7P_1:|:X *:|
* % * ok

Then, conditions (8), (9) are derived from (13). Condition (10) is
obtained from the positive definiteness of matrix P (Lemma 3.1). \Y
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Solution 2: Variable Change

Factorization of matrix P > 0

X 1 Y
Prly =Ty, nl:[MT 0],I'I2:[ ]

Variable change

A= NAKMT + NBxCoX + YByCkMT + Y(A + BaDk C2)X
B = NBk + YByDk, C = CkMT + DxCoX, D = Dy (14)

Notation He(A) = A+ AT
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Solution 2: Variable Change

Solvability condition

AX + B,C A+ BDGC Bi1 + BoDDy; 0
A YA + BG, YB: 4+ BDy; 0
He 0 0 =y 0 <0 (15)
G X+ D1oC G + D1oDCG  Dig + D12DDyy —%/
X |
[ |y ] > 0. (16)

Controller K(s) = (Ak, Bk, Ck, Dk)

Dk =D, Cx = (C - DxGX)(M™)T, Bk = N"}(B — YB,Dk)

Ak = N7YA — NBxGoX — YBy,CkMT — Y(A+ BoDk G)X)(M~HT.
(17)
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Selection of Generalized Plant

Selection of Generalized Plant

@ Consideration of Disturbance Control
@ Single out the major disturbance and put its output response into the
performance output.
o Examine the frequency response of disturbance and use it the
weighting function.
© Consideration of Model Uncertainty
© Consideration of Input Constraint
o Always put the input into the performance output
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Selection of Weighting Function

@ Weighting Function of Dynamic Uncertainty
@ Use a tight but low-order upper bound
© Weighting Function of Input

@ High-pass transfer function
@ Low gain within the control bandwidth
@ High gain beyond the control bandwidth

© Weighting Function of Performance

o Use models of ref. input and disturbance, usually low-pass;
@ Raise the gain as high as possible
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I[EEJ HDD benchmark
© Physical model of HDD

Ko A1 A1
=2 T2 2t 2 2
s 2+ 2Cwis +wy  $% 4+ 2 1was + w;

Pls) = Fee(18)

© Obtained via finite element method and modal analysis

© High order resonant modes vary with manufacturing error, hundreds
of thousands of HDDs controlled by the same controller.

© Control design carried out based on rigid body model P(s) = K, /s>
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IEEJ HDD benchmark

i fi (Hz) Gi Ai

1| 4100 (+£15%) | 0.02 -1.0

2 | 8200 (£15%) | 0.02 1.0

3| 12300 (+£10%) | 0.02 -1.0

4 | 16400 (£10%) | 0.02 1.0

5| 3000 (£5%) [ 0.005 | 0.01 (—200% ~ 0%)

6 | 5000 (£5%) | 0.001 | 0.03 (—200% ~ 0%)
Kp 3.744 x 10°

Gain [dB]

_ool|=Nominal
— Actual

10

10*

10° 10°

Cramiinnms Tradlal
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IEEJ HDD benchmark

© High freq resonant modes modeled as a multiplicative uncertainty

k
P(s) =Pl +AW), Po(s) =5, [Al, <1

1— P(jw)

© Draw the relative error Po(jw)‘ in a Bode plot.

© Determine a minimum phase weighting function s.t. the gain of its
freq response covers the relative errors.

20
T O
k=3
£ \>
3 2
-40 e
—Actuallf
-e0f|"--"Actual2
---Actual3
-80
10° 10° 10* 10° 10°

Frequency [rad/s]
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Case Study: # oo control of HDD

Case Study: H., control of HDD

© Head positioning in face of wind disturbance
© Wind disturbance: step signal

© wy and z: input and output used to penalize the disturbance

response

@ wsy and z: output and input of multiplicative uncertainty
© z3: performance output used to penalize the control input u

z3 w1 Z> wp zZ]
! ! !
W4 W3 W2 Wl
u é P(S) U y
TS EE—E
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Case Study: # oo control of HDD

Case Study: H., control of HDD

© Wi: dynamics of the disturbance
O Wh: gain of the multiplicative uncertainty
© Wj: parameter mainly used to tune the response speed
Q W,: weighting function used to adjust the control input

z3 wm 2 w2 ¥4

W4 W3 W2 Wl

u é P(s) @, y
] December 13, 2016
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Weighting functions

© Gain of uncertainty weight W, rises sharply around w = 2 x 10*
rad/s, no effective control possible above it.

© Disturbance weight W and input weight W should intersect in the
vicinity of this frequency.

© Wind disturbance model Wj is an integrator, its gain should be as
high as possible.

60

Gain [dB]

-10
10

10° 10" 10
Frequency [rad/s]
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Weighting functions

s+8.1 x 10° 4
Wi(s) = ———"—x41lx1
18) = o x1p 6 X410
2 4 8\ 2
2+ 1.4 x10% +1.1 x 10
Wa(s) = | 7 =) %33
s+ 1.9 x10%s+7.6 x 10
s+2.0 x 103
Ws =1.0 x 1073, Wy(s) = ————""— x 1.4 x 102
3= 101075, Wals) = =55 g5 < 14 < 10
60
)
S,
=
©
O]
] oo December 13, 2016
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H ., controller
© Notch at the peak freq. of resonant modes, obtained automatically.

© Contains an integrator
© Phase lead

Gain [dB]

Phase [deq]

10 10° 10° 10 10
Frequency [rad/s]
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Output Response

© No noticeable difference in outputs, almost the same output response
have been achieved.

(a) Nominal output response (b) Actual output response

Figure: Step disturbance response (output)
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Case Study: # oo control of HDD

Input Response

© Input of the actual system is much more oscillatory.

x107°

1
[v] indui jonuod

3
Time [s]

2

3
x10"

2
Time [s]

(b) Actual output response

(a) Nominal output response

Figure: Step disturbance response (input)

25 / 30

December 13, 2016



Scaled H,, Control

© Hoo control problems with a constant scaling matrix L > 0
||L1/2HZWL_1/2||00 <7. (19)

@ CLS Hu(s) = (Ac, Be, Cc, D¢) satisfies (19) iff 3P >0, L >0
satisfying (bounded-real lemma)

ATP+PA. PB. CT

BIP -yL DI | <o (20)
C. D, —yL7?!
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Scaled H o, Control

Solution
Theorem 2
Assume (Al). The scaled H, problem has a solution iff there exist
matrices X > 0,Y > 0 and L, J satisfying
- AX + XAT X B
T 1
"SX N ] GX  —J Du [ ’\(’)X N ] <0 (1)
™ B D} 9L ™
YA+ATY vB, C
T 1
’\SY IO ] B/Y  —yL D] [ ’\SY ,0 ] <0 (22
Nz G D1 —vJ Nz
X
RS (23)
LJ=1 (24)
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K-L iteration mathod

© Condition LJ = [ is not convex, cannot be solved by using LMI
approach directly.

Q Need to use the K-L iteration method.

Step 1 Let L=1.
Step 2 Compute a controller K(s) such that ||[LY/2H,,, L=1/?| 4 is
minimized and denote the minimal norm by k.

Step 3 Fixing the controller K(s), find scaling matrix L > 0 such
that ||L'/2H,, L='/?||o is minimized and denote the minimal
norm by ;.

Step 4 If vk — L is less than a specified value, end the design and
output the controller K(s) obtained in Step 2; Otherwise,
return to Step 2.
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K-L iteration mathod

© L is known in Step 2, so we can compute vk and P > 0 by solving a
GEVP:
min 7 subject to (21), (22), (23)
Q Controller K(s) is obtained by solving LMI

Q+ETKF+FTKTE<O (25)
A'P+PA PB, C, PB
T =T =T
[ Q E ] _ B, P -l Di | 0 | ()
d .G Du —kd | D
Co D 0

© Optimization problem in Step 3 can be solved by solving the GEVP:
min ~y subject to
AIP+PA. PB. ClL
BI'P —yL DIL | <0, P>0, L>0 (27)
LC, LD, —~L
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Scaled H o, Control

Project

@ Repeat the design of head positioning control of HDD using the
scaled H o control method.
@ Requirements

@ Tune the weighting functions of performance output so as to achieve
the best possible solution.

@ Show the Bode plots of controller, open-loop systems w.r.t. the
nominal model and true plants at all vertices of parameter vectors.

© Show the Bode plots of closed-loop systems from wind disturbance to
head position w.r.t. the nominal model and true plants at all vertices
of parameter vectors.

@ Show the time response of head position and input w.r.t. the nominal
model and true plants at all vertices of parameter vectors.
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