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Introdu
tionIn traditional 
ontrol theories, no matter the 
lassi
al 
ontrol theoryor the modern 
ontrol theory, the 
entral issue is to design a single
ontroller 
apable of 
ontrolling the plant.Performan
e optimization problem basi
ally boils down to shaping the
losed-loop transfer matrix. However, in performan
e optimization itbe
omes an obsta
le to ensure the stability of system.Question: is it possible to des
ribe all 
ontrollers that stabilize theplant by a formula with a free parameter?Answer: YES!Parametrization of stabilizing 
ontrollers is a great progress in 
ontroltheory. November 11, 2016 3 / 40



Generalized Feedba
k Control SystemA motivating exampleRe
all the 2-mass-spring system (x = [!M � !L℄T )_x = 264 �DLJL kJL 0�1 0 10 � kJM �DMJM 375 x + 24 1JL00 35 d + 24 001JM 35 u (1)yP = [0 0 1℄x :1 Performan
e spe
: suppress the in
uen
e of load torque disturban
ed , and ensure that !L tra
ks the referen
e input r .2 Output to be 
ontrolled is the speed error r � !L of load, di�erentfrom the measured signal !M3 Torque disturban
e d is di�erent from the 
ontrol input u in theirproperties and lo
ations where they enter the system.4 To optimize the disturban
e (or referen
e tra
king) response dire
tlyin 
ontrol design, new input/output des
ription is needed.November 11, 2016 4 / 40



Generalized Feedba
k Control SystemGeneralized Feedba
k Control SystemGeneralized plant G (s): 
ontains the plant, signals for performan
eoptimization and weighting fun
tion.K : 
ontrollerInput/output relationships� ẑ(s)ŷ(s) � = G (s) � ŵ(s)û(s) � (2)û(s) = K (s)ŷ(s): (3)GKzy wu� ��-Figure: Generalized feedba
k system November 11, 2016 5 / 40



Generalized Feedba
k Control SystemGeneralized plantTerms1 Performan
e output z : output ve
tor used for spe
ifying the 
ontrolperforman
e and model un
ertainty2 Measured output y : input ve
tor of the 
ontroller (for example,outputs of sensors, tra
king errors, et
.)3 Disturban
e w : external input ve
tor used for spe
ifying the 
ontrolperforman
e and model un
ertainty4 Control input u: 
ommand ve
tor of a
tuatorsNot only the design of feedba
k 
ontrol systems, but also the designof feedforward systems like �lters as well as the design of 2-DOF
ontrol systems 
an be handled in this framework.GKzy wu� ��-Figure: Generalized feedba
k system November 11, 2016 6 / 40



Generalized Feedba
k Control SystemGeneralized plant1 State equation 24 _xzy 35 = 24 A B1 B2C1 D11 D12C2 D21 0 3524 xwu 35 (4)2 Partition in a

ordan
e with input h wu i and output h zy iG (s) = � G11 G12G21 G22 � = 24 A B1 B2C1 D11 D12C2 D21 0 35 (5)3 Closed-loop transfer matrix of w 7! zHzw (s) = G11 + G12K (I � G22K )�1G21: (6)November 11, 2016 7 / 40



Generalized Feedba
k Control System Appli
ation ExamplesExample: 2-DOF 
ontrol system1 Plant output yP and ref. input r used independently, instead of theirdi�eren
e r � yP as in 1-DOF 
ontrol.2 Capable of a
hieving the best tra
king performan
e3 K (s) = [KF KB ℄ 
ontains two blo
ks KF (s) and KB(s), 
orrespondingto the feedforward signal r and the feedba
k signal yP resp.4 Model of referen
e input: WR(s)WR --- - -6- -gqq � yPzw r u K �� �-- G wuryPzPK
Figure: Redu
tion of 2-DOF system to generalized feedba
k systemNovember 11, 2016 8 / 40



Generalized Feedba
k Control System Appli
ation ExamplesExample: 2-DOF 
ontrol system1 Performan
e output: tra
king error z = r � yP2 Disturban
e: impulse input w of WR(s)3 Measured output: � ryP �24 ẑ̂r̂yP 35 = G (s) � ŵ̂u � = 24 WR �PWR 00 P 35� ŵ̂u � (7)û = K (s) � r̂̂yP � = KF r̂ + KB ŷP (8)
WR --- - -6- -gqq � yPzw r u K �� �-- G wuryPzPK

Figure: Redu
tion of 2-DOF system to generalized feedba
k systemNovember 11, 2016 9 / 40



Generalized Feedba
k Control System Appli
ation ExamplesExample: 2-mass-spring system_x = Ax + b1d + b2u (9)yP = 
2x :1 Spe
: load torque disturban
e suppression2 Performan
e output: tra
king error of load speedz = r � x1 = [�1 0 0℄x + r = 
1x + r3 Measured output (2-DOF): [r yP ℄T4 Disturban
e: w = [r d ℄T5 Generalized plant: [wT u℄T 7! [z yT ℄TP(s)8>><>>:2664 _xzryP 3775 = 2664 A 0 b1 b2
1 1 0 00 1 0 0
2 0 0 0 37752664 xrdu 3775 (10)November 11, 2016 10 / 40



Generalized Feedba
k Control System Appli
ation Examples2-mass-spring system: adding signal models24 zryP 35 = P(s)24 rdu 35 (11)1 Models of ref input and disturban
e: WR(s), WD(s)2 Generalized plant of [w1 w2 u℄T 7! [z yT ℄TG (s) = P(s)� 24 WR(s) WD(s) 1 35 : (12)
November 11, 2016 11 / 40



Generalized Feedba
k Control System Appli
ation ExamplesExample: Filter design1 Purpose: estimating a signal q from plant input and output2 State equation of plant _x = Ax + B1n+ B2uyP = Cx + D1n + D2uq = Hx :3 Estimate q: input/output signals (u; yP) �ltered by F (s)4 Rule of �lter design: minimizing the estimation error z = q � qWn 6 - -g-6- q qunw zyP �P F-- -qqFigure: Filtering problem November 11, 2016 12 / 40



Generalized Feedba
k Control System Appli
ation ExamplesExample: Filter design1 Disturban
e: (n; u), Performan
e output: estimation error z ,Measured output: (u; yP), Control input: q2 Generalized plant24 ẑ̂yP̂u 35 = 2664 A B1 B2 0H 0 0 �IC D1 D2 00 0 I 0 377524 n̂̂ûq 35 = P(s)24 n̂̂ûq 35 (13)q̂ = F (s) � ŷP̂u � : (14)
Wn 6 - -g-6- q qunw zyP �P F-- -qqFigure: Filtering problem November 11, 2016 13 / 40



Generalized Feedba
k Control System Appli
ation ExamplesFilter design: adding noise model1 Colored noise n: n̂(s) = Wn(s)ŵ(s) and w is a white noise2 Generalized plant with weighting fun
tion24 ẑ̂yP̂u 35 = G 24 ŵ̂ûq 35 ; G = P 24 Wn I I 35 : (15)
Wn 6 - -g-6- q qunw zyP �P F-- -qqFigure: Filtering problem November 11, 2016 14 / 40



Parametrization of Controllers Parametrization: Stable Plant CaseStable Plant CaseTheorem 1Let G (s) be stable. Then, all stabilizing 
ontrollers are parameterized byK (s) = Q(I + G22Q)�1: (16)Q(s): arbitrary stable matrix with 
ompatible dimension.(Proof) We need only prove that K (s) stabilizes G22(s). That is,(I � G22K )�1; K (I � G22K )�1; G22K (I � G22K )�1; (I � G22K )�1G22are all stable. These four transfer matri
es are equal toI + G22Q; Q; G22Q; (I + G22Q)G22and are 
ertainly stable.Conversely, when K (s) is a stabilizing 
ontroller, K (I �G22K )�1 := Q(s) must bestable. Solving for K (s), we see that it is des
ribed by K (s) = Q(I +G22Q)�1. �November 11, 2016 15 / 40



Parametrization of Controllers Parametrization: Stable Plant CaseCase of G22(s) = �P(s)Corollary 1Assume that the plant P(s) is stable. Then all 
ontrollers that stabilizethe 
losed-loop system are parameterized byK (s) = Q(I � PQ)�1:Q(s): any stable matrix with appropriate dimension.�r yPKe uFigure: 1-DOF feedba
k system November 11, 2016 16 / 40



Parametrization of Controllers Parametrization: Stable Plant CaseExample 1Consider the SISO feedba
k system where P(s) is stable. Find all
ontrollers that enable the asymptoti
 tra
king of step ref input r .(Solution) Lapla
e transform of tra
king errorê(s) = r̂(s)� ŷ(s) = 11 + PK r̂(s) = 11 + PK 1s :Substitution of K (s) = Q=(1� PQ) leads to ê(s) = (1� PQ)1s .e(1) = lims!0 sê(s) = 1� P(0)Q(0) = 0) P(0) 6= 0; Q(0) = 1P(0) :Required 
ontrollers:�K (s) = Q1� PQ ���Q is stable and Q(0) = 1P(0)� :K (s) 
ontains at least one integrator 1=s sin
eK (0) = lims!0 Q1� PQ !1: November 11, 2016 17 / 40



Parametrization of Controllers Parametrization: Stable Plant Case
For instan
e, for the plantP(s) = 1(s + 1)(s + 2) ;one of the 
ontrollers is obtained asK (s) = 2(s + 1)(s + 2)s(s + 3)when the free parameter is sele
ted as Q = 1=P(0) = 2. r

November 11, 2016 18 / 40



Parametrization of Controllers Parametrization: Stable Plant CaseExample 2Consider the SISO system. Assume that P(s) is stable and P(0) 6= 0. Findall 
ontrollers that are 
apable of asymptoti
 reje
tion of step disturban
ed. Further, for P(s) = 1=(s + 1), sele
t the free parameter asQ(s) = P�1(s) k1+�s (� > 0) and design a 
ontroller satisfying kyk2 � 0:1.duK P y� Figure: Disturban
e 
ontrol
November 11, 2016 19 / 40



Parametrization of Controllers Parametrization: Stable Plant CaseduK P y� Figure: Disturban
e 
ontrol(Solution) Disturban
e responseŷ(s) = P1 + PK d̂(s) = P1 + PK 1s :K = Q=(1� PQ) yields ŷ(s) = P(1� PQ)1s : (17)All 
ontrollers guaranteeing zero steady-state output�K = Q1� PQ : Q(s) is stable and Q(0) = 1P(0)� (18)Ea
h 
ontroller K (s) 
ontains at least one integrator 1=s.November 11, 2016 20 / 40



Parametrization of Controllers Parametrization: Stable Plant Casekyk2 is bounded only if y(1) = 0. So, k = Q(0) = 1=P(0) = 1.ŷ(s) = �(s + 1)(�s + 1) = �1� � � 1s + 1 � 1s + 1=��) y(t) = �1� �(e�t � e�t=�); t � 0So, kyk22 = Z 10 y2(t)dt = �22(1 + �) � 0:12 ) �2 � 0:02�� 0:02 � 0:Its solution is �0:131 � � � 0:151. Considering the stability 
ondition� > 0, the �nal solution is 0 < � � 0:151.Obtained PI 
ompensator:K (s) = s + 1�s = 1� + 1�s : November 11, 2016 21 / 40



Parametrization of Controllers General CaseGeneral CaseTheorem 2Suppose that (A;B2) is stabilizable and (C2;A) is dete
table. Let A+B2Fand A+ LC2 be stable. Then, all stabilizing 
ontrollers are given by thetransfer matrix F`(M;Q) from y to u, where Q(s) is any stable matrixwith an appropriate dimension.M(s) = 24 A+ B2F + LC2 �L B2F 0 I�C2 I 0 35 :MQu y� ��-Figure: Parametrization of stabilizing 
ontrollersNovember 11, 2016 22 / 40



Parametrization of Controllers General CaseOutline of proofSuÆ
ien
y: Set Q(s) = (AQ ;BQ ;CQ ;DQ).K (s) = (AK ;BK ;CK ;DK )= 24 A+ B2F + LC2 � B2DQC2 B2CQ B2DQCQ � L�BQC2 AQ BQF � DQC2 CQ DQ 35 (19)A-matrix of 
losed-loop system HzwA
 = 24 A+ B2DQC2 B2F � B2DQC2 B2CQB2DQC2 � LC2 A+ B2F + LC2 � B2DQC2 B2CQBQC2 �BQC2 AQ 35 (20)A
 is similar to the blo
k triangular matrix:24 A+ B2F B2CQ B2F � B2DQC20 AQ �BQC20 0 A+ LC2 35 (21)This matrix obviously is stable. November 11, 2016 23 / 40



Parametrization of Controllers General CaseOutline of proofNe
essity: we need just prove that any stabilizing 
ontroller K (s) 
an bedes
ribed as K (s) = F`(M;Q0) with a stable Q0(s).MQ0 �� �- y��u M̂K �� �- �uy�
Input/output relation� û̂� � = M(s) � ŷ̂� � ; û = K (s)ŷ ; � �̂̂y � = M̂(s) � �̂̂u � ; �̂ = Q0(s)�̂:Relationship between M̂ and MM̂(s) = � II �M�1 � II � : November 11, 2016 24 / 40



Parametrization of Controllers General CaseOutline of proofState realization of M̂(s):M̂(s) = 24 A �L B2�F 0 IC2 I 0 35 :M̂(s) and G (s) share the same (2, 2) blo
k, namelyM̂22(s) = G22(s) = C2(sI � A)�1B2. So they both are stabilized by K (s).Therefore, Q0(s) := F`(M̂;K ) is stable.MQ0 �� �- y��u M̂K �� �- �uy�
Figure: Input/output relations of K = F`(M ;Q0) and Q0 = F`(M̂;K )November 11, 2016 25 / 40



Parametrization of Controllers General CaseStabilization of integrator P(s) = 1=s := G22A state realizations is (0; 1; 1; 0). When F = L = �1 are 
hosen,A+ B2F = A+ LC2 = �1 are stable. From the 
oeÆ
ient matrixM(s) = 24 �2 1 1�1 0 1�1 1 0 35 = 1s + 2 � �1 s + 1s + 1 �1 � ;we get K (s) = � 1s + 2 +�s + 1s + 2�2Q(s)�1 + 1s + 2Q(s)��1 :When Q(s) = 0, the 
ontroller is K (s) = �1=(s + 2).Chara
teristi
 polynomial of CLS is equal to s(s + 2) + 1 = (s + 1)2, soCLS is stable. November 11, 2016 26 / 40



Youla ParametrizationYoula Parametrization24 A+ B2F B2 �LF I 0C2 0 I 35 := � D(s) �Y (s)N(s) �X (s) � (22)24 A+ LC2 �B2 LF I 0C2 0 I 35 := � � ~X (s) ~Y (s)�~N(s) ~D(s) � (23)Theorem 3Suppose that (A;B2) is stabilizable and (C2;A) is dete
table, A+ B2Fand A+ LC2 are stable. Then,(1) G22(s) = N(s)D�1(s) = ~D�1(s) ~N(s);(2) All 
ontrollers are parameterized byK (s) = ( ~X �Q ~N)�1( ~Y �Q ~D) = (Y � DQ)(X � NQ)�1 (24)Q(s): stable transfer matrix with appropriate dimension.November 11, 2016 27 / 40



Stru
ture of Closed-Loop System AÆne Stru
ture in Controller ParameterAÆne Stru
ture in Controller ParameterController K (s) � _xKu � = � AK BKCK DK � � xKy � : (25)Closed-loop system24 _x_xKz 35 = � A
 B
C
 D
 �24 xxKw 35 (26)� A
 B
C
 D
 � = 24 A+ B2DKC2 B2CK B1 + B2DKD21BKC2 AK BKD21C1 + D12DKC2 D12CK D11 + D12DKD21 35 : (27)November 11, 2016 28 / 40



Stru
ture of Closed-Loop System AÆne Stru
ture in Controller ParameterAÆne Stru
ture in Controller ParameterRelationship between the 
oeÆ
ient matri
es of 
losed-loop system and
ontrollerA
 = � A+ B2DKC2 B2CKBKC2 AK �= � A 00 0 �+ � B2DKC2 B2CKBKC2 AK �= � A 00 0 �+ � B2 00 I � � DK CKBK AK � � C2 00 I � :A
 is an aÆne fun
tion of the 
oeÆ
ient matrix of 
ontroller:K = � DK CKBK AK � : (28)November 11, 2016 29 / 40



Stru
ture of Closed-Loop System AÆne Stru
ture in Controller ParameterAÆne Stru
ture in Controller Parameter� A
 B
C
 D
 � = � A B1C 1 D11 �+ � B2D12 �K[C 2; D21℄ (29)24 A B1 B2C 1 D11 D12C 2 D21 35 = 266664 A 0 B1 B2 00 0 0 0 IC1 0 D11 D12 0C2 0 D210 I 0
377775 : (30)1 Closed-loop transfer matrix is a nonlinear fun
tion of the 
ontroller.Meanwhile, in state spa
e their 
oeÆ
ient matri
es have an aÆnerelation whi
h is mu
h simpler.2 It is be
ause of this aÆne feature that the state spa
e method ise�e
tive in various kinds of optimal 
ontrol designs.3 In the H1 
ontrol and multiple-obje
tive 
ontrol, this aÆnerelationship plays a fundamental role in deriving the LMI solutions.November 11, 2016 30 / 40



Stru
ture of Closed-Loop System AÆne Stru
ture in Free ParameterAÆne Stru
ture in Free Parameter NQ� �wz�� uy w
QM
Gz

Figure: Closed-loop systemSome notations: AF := A+ B2F ; CF := C1 + D12FAL := A+ LC2; BL := B1 + LD21 (31)Â := A+ B2F + LC2: November 11, 2016 31 / 40



Stru
ture of Closed-Loop System AÆne Stru
ture in Free ParameterAÆne Stru
ture in Free ParameterClosed-loop transfer matrix w 7! z :Hzw (s) = F`(G ;K ) = F`(G ;F`(M;Q)) = F`(N;Q)N(s) = � N11 N12N21 N22 � = 2664 AF �B2F B1 B20 AL BL 0CF �D12F D11 D120 C2 D21 0 3775 ; N22(s) = 0:(32)Eventually, the 
losed-loop transfer matrix be
omesHzw (s) = N11(s) + N12(s)Q(s)N21(s): (33)Namely, Hzw (s) is an aÆne fun
tion of Q(s). This aÆne stru
ture will beused in solving the H2 optimal 
ontrol problem. November 11, 2016 32 / 40



2-Degree-of-Freedom System Stru
ture of 2-Degree-of-Freedom SystemsStru
ture of 2-Degree-of-Freedom SystemsK Pr yPu e�d
Plant dynami
s _x = Ax + Hd + Bu (34)yP = Cx (35)Performan
e output e(t) = r(t)� yP(t) (36)Disturban
e d may enter the 
losed-loop system at a lo
ation ofdi�erent from 
ontrol input u (for instan
e, 2-mass-spring system), sotheir 
oeÆ
ient matri
es are set di�erently. November 11, 2016 33 / 40



2-Degree-of-Freedom System Stru
ture of 2-Degree-of-Freedom SystemsStru
ture of 2-Degree-of-Freedom SystemsTransfer matri
es Pu(s) : u 7! yP , Pd (s) : d 7! yPPu(s) = C (sI � A)�1B ; Pd (s) = C (sI � A)�1H (37)Partition of free parameter Q(s)Q(s) = [QF (s) QB(s)℄ (38)Ref tra
king Ter , disturban
e suppression TedTer (s) =I + N12(s)QF (s) (39)Ted (s) =N12(s)QB(s)C (sI � AL)�1H� N12(s)F (sI � AL)�1H � C (sI � AF )�1H: (40)Ter (s) / QF (s), Ted (s) / QB(s)Ter (s) and Ted (s) 
an be designed independently.Stable plant 
aseTer (s) = I � Pu(s)QF (s); Ted (s) = �Pu(s)QB(s)Pd (s)� Pd (s)(41)November 11, 2016 34 / 40



2-Degree-of-Freedom System Stru
ture of 2-Degree-of-Freedom SystemsDesign example1st-order system _x = �2x + u + d ; yP = 2xRef input r and the disturban
e d are unit step signal 1(t).Control spe
: redu
e the referen
e tra
king error e(t)Plant is stable and Pu(s) = Pd (s) = 2s + 2 :Free parameters 
hosen asQF (s) = P�1u (s) 1�s + 1 ; QB(s) = �P�1u (s) 1�s + 1 ; �; � > 0)Ter (s) = 1� PuQF = ss + 1=�Ted (s) = �(PuQB + 1)Pd = � 2s(s + 2)(s + 1=�) :November 11, 2016 35 / 40



2-Degree-of-Freedom System Stru
ture of 2-Degree-of-Freedom SystemsDesign exampleTra
king errorê(s) = Ter r̂ + Ted d̂ = 1s + 1=� � 2(s + 2)(s + 1=�)) e(t) = e�t=� � 2�1� 2� �e�2t � e�t=�� : (42)Tra
king error 
an be redu
ed by lowering �; �ControllerK (s) = Q1 +QG22 = [QF QB ℄1 +QBPu = �s + 1�s � s + 22(�s + 1) � s + 22(�s + 1)� :Low frequen
y gain of K (s) in
reases when � is redu
ed, while � doesnot a�e
t the low frequen
y gain of K (s).To realize signal tra
king using an input as small as possible, weshould better mainly use feedforward 
ontrol (that is, lowering � only).Feedba
k should be strengthened only when the disturban
e is strong(lowering both � and �). November 11, 2016 36 / 40



2-Degree-of-Freedom System Implementation of 2-Degree-of-Freedom ControlImplementation 1K := [KF � KB ℄ = [QF �QB ℄1 + [QF �QB ℄G22 = [QF �QB ℄1� PQB : (43)QF QB P0 P yPu dr
�Feature: input of QB(s) be
omes zero when P = P0 and d(t) = 0.So feedba
k 
ontroller KB(s) is not a
tivated.Transfer fun
tion r 7! yPHyP r (s) = P(s)QF (s) November 11, 2016 37 / 40



2-Degree-of-Freedom System Implementation of 2-Degree-of-Freedom ControlImplementation 1QF QB P0 P yPu dr
�Model-mat
hing: let 
losed-loop transfer fun
tion mat
h or 
lose to areferen
e model M(s) with good performan
eFeedforward 
ompensator QFPQF = M ) QF (s) = M(s)P(s) (44)QF must be stable. So when the plant P(s) have unstable zeros, themodel M(s) must also 
ontain the same zeros. That is, for anon-minimum phase plant, the output response 
annot be improvedarbitrarily. November 11, 2016 38 / 40



2-Degree-of-Freedom System Implementation of 2-Degree-of-Freedom ControlImplementation 2Physi
al impli
ation: feedba
k 
ontroller is a
tivated when output ofa
tual plant is di�erent from and that of ref model M(s); when theyare the same, the feedba
k 
ontroller stops working.MPM KB P yPu dr
�Figure: Another Form of 2-DOF Systems November 11, 2016 39 / 40



2-Degree-of-Freedom System Implementation of 2-Degree-of-Freedom ControlExample: plant with low dampingP(s) = 4s2 + s + 4 (� = 14 ; !n = 2):1 Ref model with a strengthened damping:M(s) = 4s2 + 3s + 4 (�� = 0:75; !�n = 2):2 Feedforward 
ompensatorQF (s) = MP = s2 + s + 4s2 + 3s + 4 :3 Feedba
k 
ontrollerQB(s) = P�1 1(�s + 1)2 ) KB(s) = s2 + s + 42�2s(s + 2=�) :4 Sensitivity fun
tionS(s) = 11 + PKB = 1� PQB = 1� 1(�s + 1)2 = �s(�s + 2)(�s + 1)2November 11, 2016 40 / 40
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