Chapter 7

Parametrization of Stabilizing Controllers
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Introduction

@ In traditional control theories, no matter the classical control theory
or the modern control theory, the central issue is to design a single
controller capable of controlling the plant.

@ Performance optimization problem basically boils down to shaping the
closed-loop transfer matrix. However, in performance optimization it
becomes an obstacle to ensure the stability of system.

@ Question: is it possible to describe all controllers that stabilize the
plant by a formula with a free parameter?

@ Answer; YES!

@ Parametrization of stabilizing controllers is a great progress in control
theory.
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Generalized Feedback Control System

A motivating example

Recall the 2-mass-spring system (x = [wp ¢ w]")
D K 1
i I 0
x=1 -1 0 1 x+| 0 [d+| 0 |u (1)
k D L
o g ] Lol L4
yp=1[0 0 1]x.

@ Performance spec: suppress the influence of load torque disturbance
d, and ensure that w; tracks the reference input r.

© Output to be controlled is the speed error r — w; of load, different
from the measured signal wy

© Torque disturbance d is different from the control input v in their
properties and locations where they enter the system.

@ To optimize the disturbance (or reference tracking) response directly
in control design, new input/output description is needed.
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Generalized Feedback Control System

@ Generalized plant G(s): contains the plant, signals for performance
optimization and weighting function.

@ K: controller

@ Input/output relationships

Figure: Generalized feedback system
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Generalized Feedback Control System

Generalized plant

@ Terms
@ Performance output z: output vector used for specifying the control
performance and model uncertainty
@ Measured output y: input vector of the controller (for example,
outputs of sensors, tracking errors, etc.)
@ Disturbance w: external input vector used for specifying the control
performance and model uncertainty
@ Control input u: command vector of actuators
@ Not only the design of feedback control systems, but also the design
of feedforward systems like filters as well as the design of 2-DOF
control systems can be handled in this framework.
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Generalized Feedback Control System

Generalized plant

© State equation

X A B B X
V4 = Cl D11 D12 w (4)
y G Dy O u
© Partition in accordance with input [ VJ } and output [ Y ]
A ‘ B B
Gi1 G

G(s) = [ GH Gl2 ] =| G |Du D (5)

21 G22 Gl Dy 0

© Closed-loop transfer matrix of w +— z

(6)
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How(s) = Gi1 + GaK(I — GoaK) 1 Goy.

November 11, 2016



T
Example: 2-DOF control system

© Plant output yp and ref. input r used independently, instead of their
difference r — yp as in 1-DOF control.

© Capable of achieving the best tracking performance

Q K(s) =[Kr Kg] contains two blocks Kg(s) and Kg(s), corresponding
to the feedforward signal r and the feedback signal yp resp.

© Model of reference input: Wg(s)

r s z w

L g Sy e

Figure: Reduction of 2-DOF system to generalized feedback system
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T
Example: 2-DOF control system

©Q Performance output: tracking error z =r — yp
@ Disturbance: impulse input w of Wg(s)
© Measured output: {y’P }

2 . .
‘?‘:G(s)[vﬁv]: We™ 0 [V:] (7)
yp U
a:K(s)[fP]:KFHKB?P (8)
O zZ w
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Generalized Feedback Control System Application Examples

Example: 2-mass-spring system

x = Ax + bid + byu 9)

. yp = CGX. .
© Spec: load torque disturbance suppression

© Performance output: tracking error of load speed
z=r—x3=[-1 0 Olx+r=cx+r

© Measured output (2-DOF): [r yp]T
© Disturbance: w = [r d]"
© Generalized plant: [W' u]" — [z yT]T

A N o . S N X
z | | a 1 0 0 r

PO ot oo | a (10)
yp C2|0 0 0 u
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Generalized Feedback Control System Application Examples

2-mass-spring system: adding signal models

‘é‘ = P(s) _cr!_ (11)
yp u

© Models of ref input and disturbance: Wg(s), Wp(s)

@ Generalized plant of [w; wo u]” = [z yT]"

WR(S)
G(s) = P(s) x Wp(s) . (12)
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T
Example: Filter design

© Purpose: estimating a signal g from plant input and output
@ State equation of plant

X:AX+81H+BQU
yp = CX+D1I’)+D2U
q = Hx.

© Estimate §: input/output signals (u, yp) filtered by F(s)
© Rule of filter design: minimizing the estimation error z=q — @
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Example: Filter design
© Disturbance: (n, u), Performance output: estimation error z,

Measured output: (u,yp), Control input: g
© Generalized plant

R AlBL B, 0 5 &
-~~~ _[H] 0o 0o —I | 5
el =lcior oo | |l TPE L )
ojo oL K
q
z
w n yp
WL ] e
[Wo [ P | F 9
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Generalized Feedback Control System Application Examples

Filter design: adding noise model

© Colored noise n: n(s) = W,(s)w(s) and w is a white noise
© Generalized plant with weighting function

5 W w,
gp | =G|l a|, G=p / . (15)
i q /
q
Z

w n yp

v L _

W — P ——1 F q

Figure: Filtering problem
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Parametrizations Stable Plant Case
Stable Plant Case

Theorem 1

Let G(s) be stable. Then, all stabilizing controllers are parameterized by

K(s) = QU + G»Q) 1. (16)

Q(s): arbitrary stable matrix with compatible dimension.

(Proof) We need only prove that K(s) stabilizes G»(s). That is,
(I — GpK)™, K(I = GoaK) ™Y, GuoK (I — GoaK) ™, (I — GoaK) 2 Gao
are all stable. These four transfer matrices are equal to
[ +G»Q, Q, 6@, (I + 62Q)Gx

and are certainly stable.

Conversely, when K(s) is a stabilizing controller, K(/ — G K)~! := Q(s) must be

stable. Solving for K(s), we see that it is described by K(s) = Q(/ + G Q)~1.
] November 11, 2016 15 / 40



Parametrization of Controllers Parametrization: Stable Plant Case

Case of Gy(s) = —P(s)

Corollary 1

Assume that the plant P(s) is stable. Then all controllers that stabilize
the closed-loop system are parameterized by

K(s) = QI — PQ) L.
Q(s): any stable matrix with appropriate dimension.

€ u

r‘T_ K p y

Figure: 1-DOF feedback system
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Parametrization of Controllers Parametrization: Stable Plant Case

Example 1

Consider the SISO feedback system where P(s) is stable. Find all
controllers that enable the asymptotic tracking of step ref input r.

(Solution) Laplace transform of tracking error
N R ayy. Lo 11

Substitution of K(s) = Q/(1 — PQ) leads to &(s) = (1 — PQ)%.

_l’_

e(oc) = lim 52(s) = 1~ P(0)Q(0) =0 = P(0) #0,  Q(0) = 5.

Required controllers:

{K(s) =1 _QPQ Q is stable and Q(0) = W} .

K (s) contains at least one integrator 1/s since

K(0) = lim — 00.

s—01 — PQ
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Parametrization of Controllers Parametrization: Stable Plant Case

For instance, for the plant

one of the controllers is obtained as

2(s +1)(s + 2)

Klis) = s(s+3)

when the free parameter is selected as Q = 1/P(0) = 2. \Y
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Parametrization of Controllers Parametrization: Stable Plant Case

Example 2

Consider the SISO system. Assume that P(s) is stable and P(0) # 0. Find
all controllers that are capable of asymptotic rejection of step disturbance
d. Further, for P(s) =1/(s + 1), select the free parameter as

Q(s) = P~1(s) 1+kes (e > 0) and design a controller satisfying ||y||, < 0.1.

Figure: Disturbance control
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Parametrization of Controllers Parametrization: Stable Plant Case

Figure: Disturbance control

(Solution) Disturbance response
. P P 1
W)= 1R ) = TPk s
K = Q/(1 - PQ) yields

7(s) = P(1 - PQ).

All controllers guaranteeing zero steady-state output

{K 1 —QPQ : Q(s) is stable and Q(0) = %0)}

Each controller K(s) contains at least one integrator 1/s.
] November 11, 2016
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Parametrization: Stable Plant Case
lly|l, is bounded only if y(c0) =0. So, k = Q(0) =1/P(0) = 1.

)’(5):(s+1)(65+1):1—e<5+1_5+1/6>

= y(t)= (e —e7/), t20

So,

0 2
Iyl = /0 y2(t)dt = 2(1€+ J <0.12 = €2 -0.02¢ — 0.02 < 0.

Its solution is —0.131 < e < 0.151. Considering the stability condition
€ > 0, the final solution is 0 < € < 0.151.

Obtained Pl compensator:

_s+1 1 1

K(s)

€S € €S
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Parametrization of Controllers General Case

General Case
Theorem 2

Suppose that (A, By) is stabilizable and (C,, A) is detectable. Let A+ ByF
and A+ LC, be stable. Then, all stabilizing controllers are given by the

transfer matrix F;(M, Q) from y to u, where Q(s) is any stable matrix
with an appropriate dimension.

A+ BF+LG|-L B

M(s) = F 0o I
-G I 0
u Y
M

o
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Outline of proof
Sufficiency: Set Q(s) = (Ag, Bg, Cq, Dg).
K(s) = (Ak, Bk, Ck, D)
A+ ByF + LGy — ByDoCs BrCo | BaDoCo — L

= —Bo& AQ Bo (19)
F—DqoG Co ‘ Dq
A-matrix of closed-loop system H,
A—l—BzDQCz BF — BzDQCz BzCQ
Ac=| BoDgCG — LG A+ BF + LG — BDoCG ByCg (20)
BQ G _BQ G AQ

Ac is similar to the block triangular matrix:
A+ BF BxCqo BoF — ByDg G
0 Ag —-Bo (G (21)
0 0 A+ LG

This matrix obviously is stable.
] November 11, 2016 23 / 40



Parametrization of Controllers General Case

Outline of proof

Necessity: we need just prove that any stabilizing controller K(s) can be
described as K(s) = Fy(M, Q) with a stable Q(s).

Input/output relation

~

(4]-wo 7], o= |

Relationship between M and M

< 3>
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Eore) B
Outline of proof

State realization of M(s):

Al-L B
M(s)y=| -=F| 0 [
G| I 0

I\:ﬂ(s) and G(s) share the same (2, 2) block, namely
Mas(s) = Gaa(s) = Co(sl — A)~1B,. So they both are stabilized by K(s).
Therefore, Qo(s) := F¢(M, K) is stable.

Figure: Input/output relations of K = F;(M, Q) and Qo = F¢(M, K)
] November 11, 2016 25 / 40



General Case
Stabilization of integrator P(s) = 1/s := Gy,

A state realizations is (0,1,1,0). When F = L = —1 are chosen,
A+ BoF = A+ LG, = —1 are stable. From the coefficient matrix

211 1
1 -1 s+1
M(s)=1] -1]0 1 :—[ ],
_1 0 s+2 | s+1 1

we get

2 -1
0= (222) o sy
When Q(s) = 0, the controller is K(s) = —1/(s + 2).

Characteristic polynomial of CLS is equal to s(s +2) +1 = (s + 1), so
CLS is stable.
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Youla Parametrization

Youla Parametrization

[ A+ ByF | B, —L D(s) —Y(s)
AR
(A+LG | -B, L %) ()

& | o ?]:[fv(s) 50| (23)

Theorem 3

Suppose that (A, By) is stabilizable and (Cy, A) is detectable, A+ ByF
and A+ LG, are stable. Then,

(1) Gaa(s) = N(s)D~(s) = D (s)N(s);

(2) All controllers are parameterized by

(24)

Kﬂ — EX — QN)" (Y — QD) = (Y — DQ)(X — NQ)™*
November 11, 2016 27 / 40



Structure of Closed-Loop System Affine Structure in Controller Parameter

Affine Structure in Controller Parameter

Controller K(s)

XK . Ak Bg XK
el o]y &
Closed-loop system
X X
: | Ac Bc
XK _|:Cc Dc:| XK (26)

A B A+ B,Dk G B> Ck ; By 4+ BoDk D>y
[CC DC]Z ___BkG Ak BkDn_ |. (27)

G+ D12Dk Gy D1aCx Di1 + D12Dk Dy
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Structure of Closed-Loop System Affine Structure in Controller Parameter

Affine Structure in Controller Parameter

Relationship between the coefficient matrices of closed-loop system and

controller

Ac

[ A+ ByDkCy BrCk

i Bk G Ak

A 0 N BoDk Gy ByCk

|0 0 Bk G Ak

A 0 n B, 0 Dk Cg G 0
(0 0 0 1]l Bk Al o0 1]

Ac is an affine function of the coefficient matrix of controller:

| Dk Ck
e[ 6]

November 11, 2016
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Structure of Closed-Loop System Affine Structure in Controller Parameter

Affine Structure in Controller Parameter

Ac B. A B; B>
|: c. D, ] = |:?1 511 :| + |: — ]/C[Cz, D21] (29)
- A0 B B 0
A B B 0.0 0 0 I
¢ D D | =[G _0 Du D 0. (30)
Cy Dy G 0 | Doy |
0o |/ 0

© Closed-loop transfer matrix is a nonlinear function of the controller.
Meanwhile, in state space their coefficient matrices have an affine
relation which is much simpler.

© It is because of this affine feature that the state space method is
effective in various kinds of optimal control designs.

© In the H, control and multiple-objective control, this affine

relationship plays a fundamental role in deriving the LMI solutions.
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Structure of Closed-Loop System Affine Structure in Free Parameter

Affine Structure in Free Parameter

V4 w

G
y; éu z<—N<—W

M £ n
'3 n

Figure: Closed-loop system

Some notations:
Ar = A+ ByF, Cgr:=(C + DpF
AL =A+ LG, By :=Bi+ LDy (31)
A=A+ ByF + LG,.
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Structure of Closed-Loop System Affine Structure in Free Parameter

Affine Structure in Free Parameter

Closed-loop transfer matrix w + z:

Hzw(s) = Fo(G,K) = Fi(G, Fo(M, Q)) = Q)
F —Bz ‘
Ni1 o Nio ]
N(s) = = , N =0.
(s) [ Nap Nop CF —D12F D11 D12 2(5)
Dx
(32)
Eventually, the closed-loop transfer matrix becomes
HZW(S) = Nll(s) + N12(S)Q(S)N21 (S) (33)

Namely, H,y(s) is an affine function of Q(s). This affine structure will be
used in solving the Hy optimal control problem.
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2-Degree-of-Freedom System Structure of 2-Degree-of-Freedom Systems

Structure of 2-Degree-of-Freedom Systems

:_i?—» e

d
Loy
r K P > YP

@ Plant dynamics

x = Ax + Hd + Bu (34)

yp = Cx (35)
@ Performance output

e(t) = r(t) — yp(t) (36)

@ Disturbance d may enter the closed-loop system at a location of
different from control input u (for instance, 2-mass-spring system), so
their coefficient matrices are set differently.
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2-Degree-of-Freedom System Structure of 2-Degree-of-Freedom Systems

Structure of 2-Degree-of-Freedom Systems

o Transfer matrices Py(s): ur— yp, Py(s): d— yp
P.(s) = C(sl —A) 1B, Py(s)=C(sl —A) tH
@ Partition of free parameter Q(s)
Q(s) = [QF(s) Qs(s)]
@ Ref tracking T,,, disturbance suppression Teg
Ter(s) =1 4+ Ni2(s)Qe(s)
Tea(s) =N2(s)Qe(s)C(sl — AL) 1H
— Naa(s)F(sl — AL)"tH — C(sl — Af)'H.

° Ter(s) X QF(S): Ted(s) X QB(S)
Ter(s) and Tey(s) can be designed independently.
@ Stable plant case

Ter(s) = 1 = Pu(s)QF(s), Ted(s) = —Pu(s)Qa(s)Pa(s) — Pa(s)
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2-Degree-of-Freedom System Structure of 2-Degree-of-Freedom Systems

Design example

@ lst-order system

x=-2x+u+d, yp=2x

Ref input r and the disturbance d are unit step signal 1(t).

@ Control spec: reduce the reference tracking error e(t)
@ Plant is stable and
2
P =P = .

Free parameters chosen as

Qr(s) = P, (), Qals) =P, (s)

:>Te,(5) =1- PuQF =

——, 67>0
Ts+1
s

s+1/e

2s
(s+2)(s+1/7)
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2-Degree-of-Freedom System Structure of 2-Degree-of-Freedom Systems

Design example

@ Tracking error

Al N o ~_ 1 2
&) = Terf + Tead = 2 = T (s + 1/7)
2T
_ a—tle -2t _—t/T
=e(t)=e 19 (e e ) . (42)

@ Tracking error can be reduced by lowering €, T
@ Controller

K(s)

_ Q _[QF Q] _7ts+1[ s+2 s+2
14+ QGx 1+QgP, 75 |2(es+1) 2(1s + 1)

@ Low frequency gain of K(s) increases when 7 is reduced, while ¢ does
not affect the low frequency gain of K(s).
@ To realize signal tracking using an input as small as possible, we
should better mainly use feedforward control (that is, lowering € only).
@ Feedback should be strengthened only when the disturbance is strong
(lowering both € and 7).
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2-Degree-of-Freedom System Implementation of 2-Degree-of-Freedom Control

Implementation 1

_ _ Q@ —-@] _[Qr —Qg]
K=1Ke —Kel= 1+[QF —@B]Gn  1—-PQg (43)

d

Ll ar 2 ‘s P 5
QB Po
@ Feature: input of Qg(s) becomes zero when P = Py and d(t) = 0.

So feedback controller Kg(s) is not activated.
@ Transfer function r — yp

Hypr(s) = P(s)QF(s)
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2-Degree-of-Freedom System Implementation of 2-Degree-of-Freedom Control

Implementation 1

L). QF ‘)(T\ u P £
QB Po

@ Model-matching: let closed-loop transfer function match or close to a
reference model M(s) with good performance

o Feedforward compensator Qf

M(s)

P(s)

@ QF must be stable. So when the plant P(s) have unstable zeros, the
model M(s) must also contain the same zeros. That is, for a
non-minimum phase plant, the output response cannot_be improved

e November 11,2016 38 / 40
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2-Degree-of-Freedom System Implementation of 2-Degree-of-Freedom Control

Implementation 2

@ Physical implication: feedback controller is activated when output of
actual plant is different from and that of ref model M(s); when they
are the same, the feedback controller stops working.

d

P

yp

IR
J

Figure: Another Form of 2-DOF Systems
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2-Degree-of-Freedom System Implementation of 2-Degree-of-Freedom Control

Example: plant with low damping

4 1
P(s)= ———— (C=
)= Zis7a 4

© Ref model with a strengthened damping:

4
M(s) = ——— *=0.75, w=2).
()= gepg (=075 wi=2)
@ Feedforward compensator
M  s>+s+4
Qe(s) = P 243544
© Feedback controller
1 s2+s+4
=Pl — — = Kg(s) = s~
Qs(s) (es +1)2 8(s) 2e?s(s + 2/e)

© Sensitivity function
1 1 es(es + 2)
=——  =1—-PQRg=1- =
1+ PKg Qs (es+1)>  (es+1)?
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