Chapter 11

Major Uncertainty Models
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Model Uncertainty: Examples

Cruise control

© Simplified speed control model for a car

_ 1
- Ms+p

P(s) (1)

© M: mass of the car, u: coefficient of road friction.

© The mass changes with load and the friction coefficient changes with
the road condition. In system design, we only know the ranges of
these parameters:

My <M< M, py < p < po.
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I[EEJ HDD benchmark
© Physical model of HDD

Ky A1 A
2 T2 2T 32 2
s 2+ 2Cwis +wy  $% 4+ 20 1ws + w;

P(s) = (2)

© Obtained via finite element method and modal analysis

© High order resonant modes vary with manufacturing error, hundreds
of thousands of HDDs controlled by the same controller.

© Control design carried out based on rigid body model P(s) = K, /s>
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IEEJ HDD benchmark

i fi (Hz) Gi Ai

1| 4100 (+£15%) | 0.02 -1.0

2 | 8200 (£15%) | 0.02 1.0

3| 12300 (+£10%) | 0.02 -1.0

4 | 16400 (£10%) | 0.02 1.0

5| 3000 (£5%) [ 0.005 | 0.01 (—200% ~ 0%)

6 | 5000 (£5%) | 0.001 | 0.03 (—200% ~ 0%)
Kp 3.744 x 10°

Gain [dB]

_ool|=Nominal
— Actual

10

10*

10° 10°

Cramiinnms Tradlal

November 15, 2016

5/ 45



RG]
Philosophy of Robust Control

o

o

Since a real physical system cannot be modeled accurately, it is
impossible to describe a real system using a single transfer function!

Instead, we can determine a model called the nominal plant, then
evaluate the difference between the real system and the model, i.e.,
the uncertainty range.

In this way, we can obtain a set of systems that includes the real
system.

If the stability and control performance are guaranteed for the plant
set, these properties carry over to the real system.

In other words, the achievable performance will be significantly
limited by the worst-case uncertainty because we need to maintain
the same level of performance for all plants in the set.

Important are the description method of plant set and the modeling
of uncertainty bounds.
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e s
Category of Model Uncertainty

© Parameter Uncertainty
© Dynamic Uncertainty
@ Unmodeled high freq resonant modes, as shown in the figure.
@ Dynamics ignored deliberately for the simplification of system analysis
and design, particularly the high freq dynamics.

K(w)

P() K.

Figure: Identified freq response with uncertainty in high freq
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Model Uncertainty: Examples Category of Model Uncertainty

System identification and unmodeled uncertainty

© Typical identification method: apply sinusoidal input to the system,
then measure the steady-state response of the output.

@ For input sin(wt), the steady-state response is still a sinusoid with
amplitude K(w) and phase angle ¢(w):

K(w) =[G(w)l, oé(w)=argG(jw). (3)
© Changing the input freq, the freq response at a different freq can be
measured. Repeating this process, a set of gain-phase data is
obtained.

K(w)

9() k.

R S
******
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Model Uncertainty: Examples Category of Model Uncertainty

System identification and unmodeled uncertainty

© A transfer function is identified by finding a rational function whose
freq response matches the measured data.

© However, in reality vibration causes mechanical attrition, so the input
freq cannot be too high. It is impossible to get the freq response in
the high freq band.

© Model uncertainty in the high freq band is inevitable.

K(w)

O e’
©-o-0

P() K.

Figure: Identified freq response with uncertainty in high freq
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Concrete Descriptons
Example: A(s) = P(s) — Po(s)

© Identification experiments under different conditions yields a number
of models P;i(jw) (i =1,2,---).
@ By calculating the gains of all P;j(jw) — Py(jw), we can find a
bounding function W(s) satisfying
|Ai(jw)| = |Pi(jw) = Po(jw)| < [W(jw)] Ve, i. (4)
This function is called the weighting function.
W (s) is usually chosen as a low order stable rational function.
Assuming that the set with bound W(s) is filled with uncertainty A,
the uncertainty can be expressed as (0(s): normalized uncertainty)
A(s) = W(s)d(s), |d(jw)| <1 Vw. (5)
O As such, we have obtained a plant set:
{P(s) | P =Po+ W3, [|d]l,, <1} (6)
@ It is natural to assume that the real plant is contained in this set.
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L Pl setwith dynamic uncentainy S
Plant Set with Additive Uncertainty

P(s)=Po+ AW, [Al, <1. (7)

Po(s): nominal plant
A(s): normalized uncertainty

000

W (s): weighting function that bounds the uncertainty set

Figure: Plant set with additive uncertainty
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el
Plant Set with Multiplicative Uncertainty

P(s)=(1+AW)P, [Afl, <1 (8)

N

P .
P O

Figure: Plant set with multiplicative uncertainty
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el
Plant Set with Feedback Uncertainty

Type |
Po

T 1+ AWR

Nl
-
TOLP ]

P(s) 1Al <1, (9)

Figure: Plant set with Type | feedback uncertainty

. November 15,2016 13 / 45



el
Plant Set with Feedback Uncertainty

Type Il
Po
P(s) = —— Al <1. 1
()= 2 18l < (10)
N
[ p ] _
L ~

_l’_

Figure: Plant set with Type Il feedback uncertainty
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Plant set with dynamic uncertainty Concrete Descriptions

Example: HDD

© Model the high freq resonant modes of HDD as a multiplicative

uncertainty.

@ Draw the relative error ‘1 —

P(jw)
Po(jw)

‘ in a Bode plot.

© Determine a minimum phase weighting function s.t. the gain of its
freq response covers the relative errors. An example is the high-pass
transfer function shown by the solid line.

40

f
20 "—,‘,"'e' ¥
QR
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s 'ﬁ' 4
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Plant set with dynamic uncertainty Concrete Descriptions
Example: HDD

@ Real plant P(s) is contained in the plant set:

P(s) = Po(L+ AW), Pofs) = 5, 1Al <L
O Region below W(s) (solid line) is treated as the uncertainty region,
but the real uncertainty comprises only a small part of it. This
inevitably enlarges the plant set and brings conservatism into
robustness condition. The payoff is that the description of uncertainty
is quite simple and suitable for analysis and design.

40

1 IR T
20| ] ok
L, :‘n k
S\ v‘
— 0 3
g ol
£ 20 Ny
8 &
-40|
—Actuallf’
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---Actual3
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Plant set with dynamic uncertainty Modeling of Uncertainty Bound

System Identification Case

© Calculate the difference between the freq responses of true plant

P(jw) and the nominal model Py(jw) on Bode plot (solid line)
O Find a weighting function W(s) (dashed line) which covers

|P(w) = Po(juw)]

-150

~

i

Figure: Weighting function of uncertainty

10°

10"
Frequency [rad/s]
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Model Reduction Case
Model Reduction Case

© This is the case where a high order plant P(s) (including time-delay)
is approximated by a low order model Py(s).

@ A weighting function W(s) is determined on Bode plot that satisfies
|P(jw) — Po(jw)| < |W(jw)| (additive uncertainty)

or

‘1 _ P(w)
Po(jw)
© Concretely speaking, we draw the curve of the left side of the

inequality, then find a rational transfer function W(s) that covers this
curve.

‘ < |W(jw)| ( multiplicative uncertainty).
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Parametric System

Parametric system: mechanical example

© Mass-damper-spring system: displacement y(t), external force u(t)

=[S A e[ Y e 2= ] @

m m m y
@ Uncertain parameters (m, b, k) take values in:
m <m<mp, bi<b<b, k<k<hk. (12)

© Vector [m b k] forms a hexahedron with 8 vertices in 3D space.

L7, !
b T

k| m u -0 b

(a) System configuration Am/
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Parametric System

Parametric system: electrical example

© Linear motor: use Lorentz force to offer a straight drive
@ Operating principle: place many pairs of magnets with the same
polarity in the order of S, N respectively on two parallel rails, then
change the polarity of electromagnetic windings in an order of
S — N — S — N periodically so as to generate a Lorentz force to
drive the stage straight forward.
© Model of linear motor
P(s) = K = K/T . (13)
s(Ts+1) s(s+1/T)
© State equation (displacement and speed of the stage as the states)
x:[g _1l]x+[g]u. (18)
T T
© Linear motor has nonlinearities such as magnetic flux leakage and
nonlinear friction with rails. Cannot be described accurately by a
linear model.
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Parametric System

Parametric system: electrical example

@ By doing numerous experiments w.r.t. different speed commands we

can obtain many pairs of (T, K).

@ Relation between T and K is not clear. A smart way is to enclose the
experimental data using a minimum rectangle (Figure (a)).
@ Measured data may be enclosed tightly with a polygon (Figure (b)).

Kapooo P o

Ky [T

0 T T>
(a) Rectangle approximation

(b) Tighter polytopic

approximation
November 15, 2016
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Parametric System Polytopic Set of Parameter Vectors

Polytopic Set of Parameter Vectors

How should we describe the uncertain parameter vector [m b k]?

© One parameter case: mass m takes values in an interval [my, my]

© my and my, the two ends of the interval, are known. The question is
how to use these vertices to express an arbitrary point in the interval.

© Simplest way: take a vertex as a starting point, then add the variation
relative to this starting point. This variation is expressed as product
of my — my and a factor A € [0, 1] which represents the variation rate.

Q@ m € [my, my] can be written as
m=my — A(my—my) =xmy + (1 —X)my
© More compact form: setting a3 = A, ap =1— A
m=aym +axmp, a; +ax =1, a; > 0. (15)

© This equation expresses a convex combination of the vertices my, my.

. November 15,2016 22 / 45



Parametric System Polytopic Set of Parameter Vectors

Polytopic Set of Parameter Vectors

© Two-parameter case: m € [my, mp] and b € [by, bo]

m=aim +axm, a;+ax =1, aj >0
b= p1b1+ fabz, 1+ P2=1, Bi 20
@ Vector [m b]T forms a rectangle with 4 vertices (Figure (a)):

o S R P I M R B B

b

02 04

01 93

m

a) Two uncertain parameters
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Parametric System Polytopic Set of Parameter Vectors

Polytopic Set of Parameter Vectors

© Parameter vector can be written as

=[5 ]= LR an |

m m m m
= a1/ [ b11 ] +a1/3 [ bzl ] + az81 [ b12 ] + a2/ [ b22 ]
© Renaming the coefficient of each vertex

Al =a1f1, Mo =01, A3 =B, =B = A >0
M+ttt M=a(fi+52)+a(fi +62)=a1 +ax=1.

© That is, a vector € in a rectangle can always be described as a convex
combination of the four vertices:

0 = \01 + Moy + X303 + A40,. (17)

. November 15,2016 24 / 45



Parametric System Polytopic Set of Parameter Vectors

Polytopic Set of Parameter Vectors

© Three-parameter case: parameter vector set forms a hexahedron with
8 vertices

(b) Three uncertain parameters
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Parametric System Polytopic Set of Parameter Vectors

Polytopic Set of Parameter Vectors

@ Convex combination of all vertices:

m mi m mi mi
b =\ b1 + A b1 + A3 bo + Ag by
k ky ko ky ko
my my my my

+ X5 | br +Xe | b1 + A7 | b +Xs | b

ki ka ki ko

(18)

Ai>0foralliand 2% N\ =1.
© A point in a polytope can always be expressed as a convex
combination of all vertices. This conclusion applies to parameter

vectors with any dimension.
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N e Gl 127 Polytope and Polytopic System
Matrix Polytope and Polytopic System

x:[_ok 1£]x+[(1)]u, (19)

m m m

© Parameters appear in forms of product, ratio and reciprocal.
© Question 1: can the coefficient matrix be expressed as a convex
combination of the matrices obtained at the vertices?

© Mass m appears only as a reciprocal 1/m and can be expressed as
1 1 1
—=oa—toax—, ar+ax=1, a; >0.
m my my

© Substitution of this equation yields

[0 1] [ 0 1] [ 0 1]
b |=a1| _k _b |t _kx _ b
- _E mq mq mo mo
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L GO G e o R
Matrix Polytope and Polytopic System

© Question 2: can the product b x # still be expressed as a convex
combination of vertices?
Q YES!

b 1 1
— = (q— + ap—)(B1b1 + B2b2)
m mi mo

b b b b
= 11— + a1 — + b — + axfh—
mq m m»y my
b b b b
= A=+ Ao N3+ N
mi m m»y mo
AMt+X+A3+M=1X>0.
© So, the matrices can be described as matrix polytopes:
A(m, b) = >\1A(b1, m1) + AzA(bg, m1) + A3A(b1, ITI2) + >\4A(b2, ITI2)
B(m) = AlB(ml) + )\QB(ml) + )\3B(m2) + )\4B(m2).

© The same is true for the parameter product k x #
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Power issue

© More question: can the square of a parameter still be expressed as a
convex combination of its vertices?

@ NO!
m? = (army + a2m2)2 = a%m% + 2a1a0mymy + agmg.
Cross product m;mo appears and m? cannot be described only by m%
and m3.

© In robust control design, this power problem will be a bottleneck.
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Conclusion

© In summary, if 6 belongs to a polytope and its power higher than 2

does not exist, then a system with uncertain parameter vector 6 can
be described by

x = A(0)x + B(0)u (20)
y = C(0)x (21)
© Each coefficient matrix is a matrix polytope:
N N N
A(0) =D NA®G:), B(O) =D NB(), C(0) =D XiC(6;)
i=1 i=1 i=1
N
Ai>0, > Ni=L1 (22)
i=1

0; is a known vertex of parameter vector.
© This sort of uncertain systems are called polytopic systems.
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Parametric System Norm-bounded Parametric System

Norm-bounded Parametric System
Mass-spring-damper system:

: [0 1 ] [0]
X = k b X + 1 u.
m m m

© Set the nominal parameters as (mo, ko, bp)

k  k b b 1

— 2 (14w 1), — 2 (14 wady), —

m mg m mo m
Q@ Then

mo mo

3o
| I
Il
| — |
3o
—_
| — |
= O
| I
=3

iy
=%
N
(=%
el
o O

1
my V3

LI
[0 1 0 1 0 mo M1
_k _2]:[_ﬁ _ﬁ]+[_1][515253] 0

0

0
bo
mo

0

November 15, 2016
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mo

w2

31/ 45



Parametric System Norm-bounded Parametric System

Norm-bounded Parametric System

© State equation can be rewritten as
x=(A+ B1AG)x + (By + BiADyp)u

Q@ A=[0 & d3]and

0 1 0 0
S B LN R
my my mo

Lw 0 0
CIZ_ 0 %Wz , D12: 10
0 0 o V3

© Size of uncertainty vector A is measured by norm.

© This kind system is called a norm-bounded parametric system.
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Parametric System Norm-bounded Parametric System

Norm-bounded Parametric System: a better model

© Defect of the present model: uncertainty range is enlarged
O Look at % and # Suppose ky < k < kyi, M < m < my
© Parameter range is the shaded square.
Q Buta= % # is treated as uncertain parameters.
ke k . .
© Range of a becomes — < o §. m—l\:‘n and the parameter region is
enlarged to that enclosed by solid lines.

m ku
mm
mpgp--oomeee km
my
Myl A
km kM k
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Parametric System Norm-bounded Parametric System

Descriptor form

o ] SR ]
m=mg(l+ wid1), k = ko(1l + wpd2), b= by(1l+ wsd3), |6;| < 1.
© Dividing the second row of state equation by myg, we get
(I + BIAG)x = (A+ BiIAG)x + Byu
esx=+BAG) Y A+ BAG)x+ (I + BIAG) Bu
Q@ A=[0 & d3]and

=[S A a-[t) e[ 2]

mo mo mq
0 wm 0 0

G=]0 0 |,.G=-|2wm 0
0 0 0 %m
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Parametric System Norm-bounded Parametric System

LFT description
Q Setv=Cx, z=—v+ Gxand w = Az.
Q Then,
x =Ax+ Biw + Byu
v=CGAx+ CGBiw+ G Byu
© Substitution of this v into z leads to
z=(G - GAXx - GBiw— GByu.
@ Norm of matrix uncertainty A

02

01
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Parametric System Norm-bounded Parametric System

Descriptor form

© General model for norm-bounded parametric systems

)'(:AX+81W+BQd+B3U

zZ = C1X + D11W + D12d + D13u (23)
e = Gx + Douyw + Doxd + Dozu

y = C3X+D31W+D32d

w=12z, Al <1 (24)
© Parameter uncertainty can be time-varying
A(t) e RP*9, ||A(t)]], <1Vt>0. (25)

G

Y
>
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Plant Set with Phase Information of Uncertainty

Phase Information of Uncertainty

© How to capture static nonlinearity such as dead-zone, saturation?
@ Example: saturation function ¢(-) can be enclosed by two lines with
slopes of k and 0, and described by

0 < ug(u) < ku® Vu. (26)

© Relationship between the magnetic flux and the current in an
electromagnet is exactly such a saturation.

pu)h
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Plant Set with Phase Information of Uncertainty

Phase Information of Uncertainty

© More important character: ¢(-) is located in the 1st and the 3rd
quadrants, namely its slope changes between 0 and k.

@ Phase angle of ¢(-) is zero while its gain changes in the interval [0, k].

© Particularly useful is the information on the phase angle.

© Stribeck friction also has such a feature.

o)t M fi(u)

(a) Saturation (b) Stribeck friction

Figure: Examples of passive nonlinearity
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Plant Set with Phase Information of Uncertainty

Phase Information of Uncertainty

Flexible structure: torque input, velocity output

P(s) = fos + fas Foe Kns
 s2 4+ 2(owos + Wi $2+2(1wis + w? §2 4 2(pwns + w?
ki > 0 in — phase (27)
@ 1st resonant mode Mm can be identified, but the 2nd and

higher resonant modes can hardly be identified correctly.

© Frequency response of a mode m
Jw B 2(iwiw? +jw(w,-2 —w?)
w? — w? 4 2Cwiw (WP — w?)? + (2iwiw)?

i i

© Real part is nonnegative when (; > 0, thus a PR function.
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Plant Set with Phase Information of Uncertainty

Phase Information of Uncertainty

© Therefore, the sum of high order resonant modes is also PR:
kis kns
2 : 7 Tt 3 - 2
5%+ 2C1w1s + wi 5% 4+ 2(pwns + ws

-1 0 1 2 3 4 5

Figure: Nyquist diagram of a positive real transfer function
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LPV Model

© When the operating range of nonlinear systems is large, a linear
approximation can no longer be trusted.

© Meanwhile, the need is very strong to use techniques similar to linear
control in the control of nonlinear systems.

© How to transform a nonlinear system to a quasi-linear (namely in a
linear form) system?

Q@ LPV (linear parameter varying) model

x = A(p(t))x + B(p(t))u (28)
y = C(p(t))x. (29)

p(t) is a time-varying parameter vector and each matrix is an affine
function of p(t).

@ p(t) = [p(t) pa(t)] case
A(p(t)) = Ao + p1(t)A1 + p2(t)A2, B(p(t)) = Bo + pi(t)B1 + p2(t) B2
C(p(t)) = Go + pr(t)Ci + p2(t) &
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i) R T L O LA
From Nonlinear System to LPV Model

§=w—uwo (30)
. w w D
w:—OPM—MOPe—M(w—wO) (31)
: 1 Xd 1
El=——E, + 7dv 54+ —V, 32
q T’ Tdoxdz cos o+ Td f: ( )
E'V. V2 xy — X
Pe= -9 sing — -2 X4 Xd o5 (33)
Xy 2 Xy Xdx

Transmission line I

YN

Infinite
bus

Transmission line IT

Generator

LT Transformer F
HT y

Figure: Single-machine infinite-bus power system
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i) R T L O LA
From Nonlinear System to LPV Model

Transient stability: stability in face of short-circuit fault

Short-circuit fault makes the active power drop instantly, thus causing
a steep acceleration of the rotor (see Eq.(31)).

If no excitation control is activated quickly, the generator will lose
synchronism.

In the fault phase, all states deviate from the equilibrium significantly
so that the linear approximation fails.

Equilibrium of power system: (do, wo, Ego, Vo).

Goal of control: restore the deviated states back to the equilibrium,
i.e. the stabilization of error states

©06 © o6 ©o6¢0

l /
X1:(5—50, X2 = W — Wo, X3:Eq— q0s u= Vf—Vfg.
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i) R T L O LA
From Nonlinear System to LPV Model

© State equation

).(1 = X2
Xy = dysind - x3 + di Ego(sind — sin dg) + daxa (34)
x3 = d3x3 + da(cos § — cos dp) + dsxa.

@ Since

N s
siné—sinéozwxl, COS(S—COS%:%
— 0o

5 — 0o x

© Time-varying parameters defined as functions of rotor angle §:

_sind —sindp

cos d — cos dp
pl(é) - (5 _ 50 - < <

) p2(5) = Sin(sa p3(6) = 5 — 6o

(35)
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i) R T L O LA
From Nonlinear System to LPV Model

©Q LPV model

X1 = Xo
% = dipa(8)x3 + diEgop1(d)x1 + dax (36)
x3 = d3x3 + dap3(0)x1 + dsxa

O As long as the rotor angle §(t) is measured, the time-varying

parameter vector p(t) = [p1 p2 p3]” can always be calculated online.
© Vector form

x = A(p)x + Bu (37)
0 1 0 0
A(p) = d1 E(llopl(é) d2 d1p2(5) y B = 0
d4p3(5) 0 d3 C7'5
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