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Overview of Lyapunov Stability TheoryLyapunov Stability TheoryNonlinear system (state vetor x 2 Rn )_x = f (x); x(0) 6= 0: (1)1 How to �nd a ondition to ensure the asymptoti stability?2 Lyapunov's idea: not to investigate the state trajetory diretly, butto examine the variation of energy instead.3 No external energy is supplied to system (1), so the motion must stopwhen the internal energy beomes zero.4 If we know whether the internal energy onverges to zero, we ande�nitely judge if the state onverges to the origin or not.November 16, 2016 3 / 25



Overview of Lyapunov Stability TheoryLyapunov Stability Theory1 As an energy funtion, we use a positive de�nite funtion alledLyapunov funtion V (x) > 0 8 x 6= 0: (2)2 If its time derivative satis�es_V (x) < 0 8x 6= 0; (3)then the onvergene of state is guaranteedlimt!1 x(t) = 0:
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Overview of Lyapunov Stability Theory Asymptoti Stability ConditionLinear ase _x = Ax ; x(0) 6= 0: (4)1 Lyapunov funtion V (x) = xTPx > 0 8x 6= 0: (5)2 Di�erentiation of V (x) = xTPx along the trajetory of _x = Ax_V (x) = _xTPx + xTP _x = (Ax)TPx + xTP(Ax)= xT (ATP + PA)x : (6)3 So _V (x) < 0 , ATP + PA < 0: (7)Theorem 1Linear system (1) is asymptotially stable i� there exists a P > 0 satisfying(7). November 16, 2016 5 / 25



Overview of Lyapunov Stability Theory Condition for State Convergene RateCondition for State Convergene Rate1 How to guarantee a onvergene rate of state?2 When the LMI ATP + PA+ 2�P < 0; � > 0: (8)has a positive de�nite solution P ,_V (x) = xT (ATP + PA)x < xT (�2�P)x = �2�V (x):3 Solution of _y = �2�y is y(t) = e�2�ty(0).4 Aording to the omparison priniple, V (x) satis�esV (x(t)) < e�2�tV (x(0)):5 Sine �min(P) kx(t)k2 � xT (x)Px(t) < e�2�txT (0)Px(0) �e�2�t�max(P) kx(0)k2kx(t)k <p�max(P)=�min(P) kx(0)k e��t ; (9)6 x(t) onverges to zero at a rate higher than �. November 16, 2016 6 / 25



Quadrati StabilityQuadrati Stability1 Unertain system _x = A(�)x ; x(0) 6= 0 (10)� 2 Rp is a bounded vetor of unertain parameters.2 Example: mass-spring-damper system (u = 0)_x = � 0 1� km � bm � x = A(m; b; k)xParameter vetor � = [m b k ℄T .3 Barmish's idea: use a ommon quadrati funtion V = xTPx toinvestigate the stability for the entire system setV (x) = xTPx > 0 8x 6= 0; _V (x ; �) < 0 8x 6= 0; �: (11)4 When this is possible, the system set is said to be quadratially stable.5 Although a very strong spe, quadrati stability is quite e�etive inengineering appliations. November 16, 2016 7 / 25



Quadrati Stability Condition for Quadrati StabilityCondition for Quadrati Stability1 From _V (x ; �) = xT (AT (�)P + PA(�))x , quadrati stability onditionis 9P > 0 satisfying AT (�)P + PA(�) < 0 8�: (12)2 Question: how to alulate a solution P for inequality (12)?3 No general solution exists. Results known for two lasses of A(�)Example 1 _x = �(2 + �)x ; � > �2:Sine AT (�)P + PA(�) = �(2 + �)P � P(2 + �) = �2(2 + �)P,AT (�)P + PA(�) = �2(2 + �) < 0 8� 2 (�2; 1)w.r.t. P = 1. Therefore, the stability is guaranteed. November 16, 2016 8 / 25



Quadrati Stability Polytopi SystemsPolytopi Systems _x = ( NXi=1 �iAi)x ; x(0) 6= 0 (13)1 Unertain parameters satisfy �i � 0; PNi=1 �i = 1.2 Quadrati stability ondition( NXi=1 �iAi)TP + P( NXi=1 �iAi) < 0 8�i, NXi=1 �i(ATi P + PAi ) < 0 8�i : (14)3 This inequality must hold at all verties of the polytope. Hene,ATi P + PAi < 0 8i = 1; : : : ;N (15)ATi P + PAi < 0 is the ondition for �i = 1; �j = 0 (j 6= i)November 16, 2016 9 / 25



Quadrati Stability Polytopi SystemsPolytopi Systems1 As all �i are nonnegative and their sum is 1, at least one of themmust be positive.2 So when (15) holds, we haveNXi=1 �i (ATi P + PAi) < 03 LMI onditions (15) at all verties are equivalent to the quadratistability ondition (12).
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Quadrati Stability Polytopi SystemsExample: mass-spring-damper system_x = � 0 1� km � bm � x :1 Parameter set1 � m � 2; 10 � k � 20; 5 � b � 10:2 � = [m b k ℄T forms a ube with eight verties.3 Quadrati stability ondition (15) has a solutionP = � 1:9791 �2:8455�2:8455 14:2391 � > 0:4 So the system is quadratially stable.5 This onlusion is very natural in view of the fat that the dampingoeÆient b is positive. November 16, 2016 11 / 25



Quadrati Stability Polytopi SystemsExample: mass-spring-damper system1 On the other hand, when the damping oeÆient ranges over0 � b � 5, the solution of (15) beomesP = � 0:85 0:90:9 10:26 �� 10�11 � 0whih is not positive de�nite.2 So we annot draw the onlusion that this system is quadratiallystable.3 In fat, this system set inludes a ase of zero damping. So thesystem set is not quadratially stable. November 16, 2016 12 / 25



Quadrati Stability Polytopi SystemsA generalization1 Parameter-dependent Lyapunov funtion may redue theonservatism.2 A simple example:_x = A(�)x = (A0 + �A1)x ; � 2 [�m; �M ℄:3 In view of the struture of A(�), we use a matrixP(�) = P0 + �P1:4 Then P(�)A(�) = P0A0 + �2P1A1 + �(P1A0 + P0A1):5 Due to �2, the polytopi struture is destroyed s.t. the stabilityondition annot be redued to the vertex onditions. In LMIapproah, so far there is no good solution for problems like this.November 16, 2016 13 / 25



Quadrati Stability Polytopi Systems1 Method of Gahinet et al.:V (x ; �) = xTP(�)x ; P(�) > 0:2 Its derivative is a quadrati funtion of �:_V (x ; �) =xT [(AT0 P0 + P0A0) + �2(AT1 P1 + P1A1)+ �(P1A0 + P0A1 + AT0 P1 + AT1 P0)℄x3 If _V (x ; �) is onvex in �, vertex onditionsA(�m)TP(�m)+P(�m)A(�m) < 0; A(�M)TP(�M)+P(�M)A(�M) < 0ensures _V (x ; �) < 0.4 Condition for onvexityd2d�2 _V (x ; �) = 2xT (AT1 P1 + P1A1)x � 0 ) AT1 P1 + P1A1 � 0:5 Lastly, P(�) > 0 is guaranteed by the vertex onditionsP(�m) > 0; P(�M) > 0: November 16, 2016 14 / 25



Quadrati Stability Norm-Bounded Parametri SystemsNorm-Bounded Parametri Systems1 Polytopi model is very e�etive in robustness analysis, but not goodfor design.2 Norm-bounded parametri systemsM � _x = Ax + Bwz = Cx + Dw w = �z ; k�(t)k2 � 1: (16)3 State equation of CLS_x = (A+ B�(I � D�)�1C )x ; k�(t)k2 � 1: (17)4 When �(t) varies freely in k�(t)k2 � 1, the invertible ondition forI � D� is kDk2 < 1 (Exerise 13.2).�M �- zwFigure: Parametri system November 16, 2016 15 / 25



Quadrati Stability Norm-Bounded Parametri SystemsNorm-Bounded Parametri SystemsTime-varying version of small-gain theorem (Exerise 13.3) yields that theCLS (M;�) is quadratially stable w.r.t. Lyapunov funtion V (x) = xTPxif there is P > 0 satisfying24 ATP + PA PB CTBTP �I DTC D �I 35 < 0; (18)Theorem 2The time-varying system (17) is quadratially stable i� there exists apositive de�nite matrix P satisfying (18). November 16, 2016 16 / 25



Quadrati Stability Norm-Bounded Parametri SystemsExample: mass-spring-damper systemm = m0(1 + w1Æ1); k = k0(1 + w2Æ2); b = b0(1 + w3Æ3); jÆi j � 1w1 = mmaxm0 � 1; w2 = kmaxk0 � 1; w3 = bmaxb0 � 1:After normalizing � = [Æ1 Æ2 Æ3℄, we haveA = � 0 1� k0m0 � b0m0 � ; B = � 01 � ; C = �p3264 k0m0w1 b0m0w1k0m0w2 00 b0m0w3 375D = �p3 � w1 0 0 �T :1 When 1 � m � 2; 10 � k � 20; 5 � b � 10, (18) has a solutionP = � 1:9791 �2:8455�2:8455 14:2391 � > 0:2 When 0 � b � 5, no solution exists for (18) and P > 0.November 16, 2016 17 / 25



Quadrati Stability Norm-Bounded Parametri SystemsProofSuÆieny:_V (x) = _xTPx + xTP _x = (Ax + Bw)TPx + xTP(Ax + Bw)= � xw �T � ATP + PA PBBTP 0 � � xw � : (19)k�(t)k2 � 1 implies wTw = zT�T�z � zT z . As z = Cx + Dw , we getU(x ;w) = � xw �T �� 0 00 I �� � CTDT � [C D℄�� xw � � 0: (20)It an be proved that x 6= 0 in any nonzero vetor � xw � satisfyingU(x ;w) � 0. November 16, 2016 18 / 25



Quadrati Stability Norm-Bounded Parametri Systems(18) is equivalent to (Shur's lemma)0 > � ATP + PA PBBTP �I �+ � CTDT � [C D℄= � ATP + PA PBBTP 0 ���� 0 00 I �� � CTDT � [C D℄� :Multiplying this inequality by � xw � 6= 0, we have_V (x) < U(x ;w) � 0:So the quadrati stability is proved.
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Quadrati Stability Norm-Bounded Parametri SystemsNeessity: when the system is quadratially stable,_V (x) < 0; U(x ;w) � 0hold simultaneously for x 6= 0. For a bounded � xw �, _V (x) and U(x ;w)are also bounded. Enlarging _V (x) suitably by a fator � > 0, we have� _V (x) < U(x ;w) 8x 6= 0:Finally, absorbing � into P and renaming �P as P , we obtain_V (x)� U(x ;w) < 0 8 � xw � 6= 0:This inequality is equivalent to (18). rNovember 16, 2016 20 / 25



Passive SystemsPassive Systems1 A system is alled passive if its transfer funtion is either PR, orstrongly PR, or stritly PR.2 CLS: unertainty �(s) is PR while the nominal CLS M(s) is eitherstrongly PR or stritly PR.3 Intuitively, the phase angle of a PR system is limited to [�90Æ; 90Æ℄and that of a strongly PR system restrited to (�90Æ; 90Æ). So thephase angle of the open-loop system is always not �180Æ and thestability of CLS may be expeted.�My u�Figure: Closed-loop system with a PR unertaintyNovember 16, 2016 21 / 25



Passive Systems Strongly PR asePassive SystemsTheorem 3Assume that the unertainty �(s) is stable and PR. Then, the CLS isasymptotially stable if the nominal system M(s) is stable and strongly PR.�My u�Figure: Closed-loop system with a PR unertaintyNovember 16, 2016 22 / 25



Passive Systems Strongly PR ase(Proof) Let the state equations of M and � be�(s) : _x1 = A1x1 + B1(�y); u = C1x1 + D1(�y)M(s) : _x2 = A2x2 + B2u; y = C2x2 + D2u:Aording to PR lemma and strongly PR lemma, 9 P > 0;Q > 0 satisfying� AT1 P + PA1 PB1BT1 P 0 �� � 0 CT1C1 D1 + DT1 � � 0 (21)� AT2 Q +QA2 QB2BT2 Q 0 �� � 0 CT2C2 D2 +DT2 � < 0 (22)Then, for V1(x1) = xT1 Px1 > 0; V2(x2) = xT2 Qx2 > 0 we have_V1(x1) � �uT y � yTu; _V2(x2) < uT y + yTu:Lyapunov andidate of CLS: V (x1; x2) = V1(x1) + V2(x2)_V (x1; x2) = _V1(x1) + _V2(x2) < 0Therefore, the CLS is asymptotially stable. November 16, 2016 23 / 25



Passive Systems Stritly PR asePassive SystemsTheorem 4Assume that the unertainty �(s) is stable and PR. The CLS isasymptotially stable if the nominal system M(s) is stable and there is aonstant � > 0 suh that M(s � �) is PR.�My u�Figure: Closed-loop system with a PR unertaintyNovember 16, 2016 24 / 25



Passive Systems Stritly PR ase(Proof) The proof is similar to that of Theorem 3. The only di�erene isto replae the strongly PRness of M(s) by (modi�ed) stritly PRness, i.e.� (A2 + �I )TQ +Q(A2 + �I ) QB2BT2 Q 0 �� � 0 CT2C2 0 � � 0: (23)_V2(x2) � uT y + yTu � 2�xT2 Qx2 (24)So again, the Lyapunov andidate V (x1; x2) = V1(x1) + V2(x2) satis�es_V (x1; x2) = _V1(x1) + _V2(x2) � �2�xT2 Qx2When x2 is not identially zero, V (x1; x2) stritly dereases.When x2(t) � 0, y = C2x2 = 0. Substituting y = 0 into _x1, we have_x1 = A1x1 ) x1(t)! 0beause A1 is stable. Therefore, the CLS is asymptotially stable.November 16, 2016 25 / 25
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