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Introduction of p Robust Problems with Multiple Uncertainties

Example 1: When uncertainties put together, we get
y=(A2+ P)P(A1+ P1)i = P,PP10 + Al
= A =APA; + AyPP; + P,PA;.
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Introduction of p Robust Problems with Multiple Uncertainties

A = DyPA; + DyPPy + PyPA;. (2)

© Need to estimate an upper bound for A based on those of Aj, As.

© This bound is often enlarged. Further, in the estimated scope of A,
there are many other uncertainties not belonging to (2). Plant set is
far greater than the actual plant set.

© Control design will often be very conservative. Most typically, the
controller gain has to be lowered in the low/middle frequency bands,
making it impossible to realize good disturbance attenuation and fast
response.

. December 13,2016 4 / 26



Introduction of p Robust Problems with Multiple Uncertainties

© Via transformation of block diagram, these two uncertainties can be

aggregated as a diagonal matrix [ A01 A02 } with

2| 7
PR T
KPao(l — PPLKP2)" P (I — KPyPP1) K
M = - -1 _ -1 . (4)
(I — PPLKPy) 1P PPy(I — KPyPPy) 1K

© This transformation does not change the uncertainties. Therefore, it
is possible to achieve a less conservative control design.
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Introduction of p Robust Problems with Multiple Uncertainties
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Robust Problems with Multiple Uncertainties
Structured Uncertainty

© In general, when there are r uncertainties A; (i = 1,...,r), the CLS
can always be rewritten as

Ay

M

© Block-diagonal A is called structured uncertainty.

© Such transformation does not change the stability of system.
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G G LD
Stability margin

@ Roots of det[/ — M(s)A(s)] = 0 are the poles of closed-loop system.

@ A =0: CLS must be stable, det[/ — M(s)A] =1 # 0.

© Next, we fix the dynamics of uncertainty A and increase its gain
gradually until CLS becomes unstable.

© Since CLS poles vary continuously with the uncertainty, they must
cross the imaginary axis before getting unstable.
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Figure: Continuity of poles
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Introduction of p Robust Problems with Multiple Uncertainties

© Uncertainty destabilizing CLS for the first time must be the one with
the smallest norm in all A’s satisfying

det(/ — M(jw)A(jw)) =0, w € [0, 00). (5)

© lts norm is called stability margin.
© Stability margin depends on the diagonal structure of A and the

matrix M.
© Reciprocal of stability margin is exactly the structured singular value
na(M(jw)).
A,
A,
M
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Introduction of p Robust Performance Problem

Robust Performance Problem

© A problem of robust H., performance can be equivalently converted
into a robust stabilization problem of systems with structured
uncertainty.

© This is an even more important motivation for considering the robust
stabilization of systems with structured uncertainty.

(a) Original problem (b) Equivalent stability problem
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Definition of

@ At a frequency, a transfer matrix becomes a complex matrix.
O Fix the frequency and consider A C C™*" and M € C"*™.,

A:{A | A:diag(51/,1,...,55/,5,A1,...,AF)} (6)
5 € C, Aj € C™ixni

Definition 1

Given matrix M € C"™", the structured singular value upa (M) is defined as

1
min{omax(2) | & € A, det(/ — MA) = 0}

pa (M) = (7)

pa (M) =0 when there is no A € A satisfying det(/ — MA) = 0.
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Definition of p and Its Implication

Implication of u

Definition 2
Given M € C™", the structured singular value jua (M) is defined as

1
min{omax(2) | & € A, det(/ — MA) = 0}

pa (M) =

pa (M) = 0 when there is no A € A satisfying det(/ — MA) = 0.

Q ua (M) is the reciprocal of the gain of the smallest uncertainty
among all A € A satisfying det(/ — MA) = 0.

© Therefore, det(/ — MA) # 0 holds for all A € A satisfying
Uma.x(A) < 1/:U*A (M)

© Conversely, as long as there is one A; € A such that
Omax(A1) > 1/pua (M), there must be a A € A satisfying
det(/ — MA) = 0.
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Definition of p and Its Implication

Robust Stability Criterion
Theorem 1

Assume that M(s) and the structured uncertainty A(s) € A are stable,
|All,, <. Then, the CLS is robustly stable iff

sup pa(M(jw)) <

: (9)

2=
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Bounds of pua (M)

© Single scalar block uncertainty A = {4/ | 6 € C}

@ Full block uncertainty A = C™"
pa (M) = omax(M) (11)
© Inclusion relation of uncertainty sets:
{6l,|6€C}cAcC™n (12)

© When an uncertainty is restricted to its subset, a greater uncertainty
magnitude is allowed s.t. the corresponding u gets smaller. Therefore,

p(M) < 12 (M) < 01ax(M). (13)
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Improved Bounds of ua (M)
Scaling matrices

D = {D | D = diag(Dx, ..., Ds,d1lmy,- -, dF—1lmp_,Imp) } (14)

0={Qeh|QQ=1) (15)
e
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Bounds of pp (M)

Theorem 2
For any Q € Q and D € D, there hold

pa (M) = pa(DMD™Y) = pa(QM) = pa(MQ). (16)

(Proof) First of all, we obtain pa (M) = pa(DMD™1) from

det(/ — MA) = det(/ — MD~1DA) = det(/ — MD~'AD) = det(/ — DMD™1A).
Secondly, pa (M) = pa(MQ) holds because

det(/ — MA) =0 < det(/ — MQQR*A) =0, @*A € A and

Omax(Q*A) = omax(A). Similarly, we can prove that pa (M) = pa(QM). )

© Improved bounds for ua (M)

M) < M) < inf opax(DMD™L). 17
gleaép(Q ) < pa( )—BEDU ax( ) (17)

© We may approach pa (M) by solving optimization problems about
the spectral radius and the largest singular value.
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Robust # o Performance Condition

Robust H ., Performance Condition

A
2. [z

(a) Robust performance problem

(b) Equivalent robust stability
problem

Theorem 3

Suppose that the uncertainty A(s) € A is stable and satisfies | Al < 1.
CLS satisfies || F, (M, A)||,, <1 for all uncertainties iff

loo

SUP 114 (M(jw)) < 1. (18)

v
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D-K lteration Design

© Improved bounds of p

max p(QM) < pa (M) < inf opax(DMD™Y) (19)
QcQ DeD
© Maximization the lower bound is not convex.
© Upper bound is the largest singular value and its minimization
problem is convex.
© Convexity of minimization of the largest singular value
o Minimizing omax(DMD 1) is equivalent to minimizing v > 0 satisfying

(DMDY)*(DMD™) < 4?1 & M*XM < ~*X, X = D*D. (20)
@ Minimizing ~ subject to this LMI is a GEVP and convex:
miny
subject to (20)
@ D is computed by using the singular value decomposition method.
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GG ST ) DL
Procedure of D-K lteration Design

© CLS transfer matrix M
M(s) = Fu(G, K). (21)

@ Taking the maximum of opmax(DMD ™) w.r.t. all frequencies, the
largest singular value o, becomes the H, norm.

supjua (M) < inf [ DMD™] (22)

@ Scaling matrix D and controller K(s) need be solved alternately.

Q Idea: when the controller K(s) is known, M(s) is also fixed. So, the
scaling matrix D(s) can be calculated pointwise.

© When the scaling matrix D(s) is given, the controller K(s) can be
obtained by solving an H, control problem.

O After each iteration the scaling function is added to the generalized
plant, which leads to a very high order of the final controller. Model
reduction is necessary before the controller is implemented.
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GG ST ) DL
Procedure of D-K lteration Design

Figure: u synthesis using scaling
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Case Study: # oo control of HDD

Case Study: H., control of HDD

© Head positioning in face of wind disturbance
© Wind disturbance: step signal

© wy and z: input and output used to penalize the disturbance

response

@ wsy and z: output and input of multiplicative uncertainty
© z3: performance output used to penalize the control input u

z3 w1 Z> wp zZ]
! ! !
W4 W3 W2 Wl
u é P(S) U y
TS EE—E
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Case Study: # oo control of HDD

Case Study: H., control of HDD

© Wji: dynamics of the disturbance
© Wh: gain of the multiplicative uncertainty
© Wj: parameter mainly used to tune the response speed
Q W,: weighting function used to adjust the control input

z3 wm 2 w2 ¥4

W4 W3 W2 Wl

u é P(s) @, y
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Case Study: # oo control of HDD

@ Gain of performance weight W;(s) is 60% higher.

@ Transitions of i a

s+1.1x8.1x 102

Wi(s) = 1.6 x Ti0xi0 4.1 x 107*
nd Hy norm
Number of D-K iterations 1 2
7 1.378 | 0.998
H oo norm 1.432 | 0.999

Gain [dB]

-10 2 2 5
10 10 10 10 10
Frequency [rad/s]
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Case Study: # oo control of HDD

1 controller

@ Higher low frequency gain
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Comparison of p and H, controllers (solid: p, dashed: Ho)
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Output Response

@ Smaller amplitude, faster convergence.

@ No much difference in the nominal and robust responses.

0.02

(a) Nominal output response (b) Actual output response

Figure: Step disturbance response (solid: u, dashed: H.)
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Case Study: # oo control of HDD

Input Response

@ Roughly the same amplitude

@ Faster amplitude change in 0.5-1.0 sec.
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(b) Actual input response

(a) Nominal input response

Figure: Step disturbance response (solid: u, dashed: H.)
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