Chapter 2

Basics of linear algebra
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Norm and Inner Product of Vector [EAVEIEIIaIII

Vector norm

® How to measure the size of a vector?
@ Distance in 3D Euclidean space: from a point P(x,y, z) to the origin

d(P) = Ry T 2 )

@ Notion of norm

lull = d(P), P(x,y,2) ~u=[xyz]"

Fiiure: Distance in Euclidean space
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Norm and Inner Product of Vector [EAVEIEIIaIIIe

Vector norm

@ Property of Euclidean distance
Q ||u|| > 0 (positivity)
©Q ||ul| = 0 iff u =0 (positive definiteness)
Q ||aul| = |a]||u|| for any scalar a € R (homogeneity)
Q ||lu+ v|| <||ul]l + ||v]| for any vectors u, v (triangle inequality)

(1): trivial.

2): lul=vx2+y?+22=0x=y=2z=0cu=0
(3): llaw|| = /{ax)2 + (ay)2 + (az)? = ol |lu]

(4): Proved by Cauchy-Schwarz inequality

2(xy + yz + zx) < x® + y? + 22
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Norm and Inner Product of Vector [EAVEIEIIaIIIe

Vector norm

@ Generalization: scalar real-valued function defined in any vector space
(as well as matrix space, function space) is called a norm of the
corresponding space if it satisfies all the properties below, and is used
to measure the size of vector (matrix, function).

Q [lu| >0
Q ||u]|=0iffu=0
Q ||lav|| = |a|||ul| for any scalar a« € F

Q ||u+ v|| <||ul| + ||v]| for any vectors (matrices, functions) u, v

Examples:

n

L-norm [lull; = |ujl

i=1

2-norm |ul|, =

Infinity-norm ||u|, = max |ujl
SIsn
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Norm and Inner Product of Vector [EAVEIEIIaIIIe

An example

Example 1
Prove that the function f(u) = Y7, |ui| is a norm. J

(Proof) Obviously, f(u) > 0. Secondly
f(U):O == |U,‘|:0Vi S uy=0Vi & u=0

holds. It is also easy to see that

= lau] =lal)_|ui] = |a|f (u)
i=1 i=1

Further,

fu+v) Z|u,+v,|<z (Jui] + |vi]) = F(u) + F(v)

is true because the triangle inequality |u; + vi| < |u;| + |v;| holds for scalars. So,
this f(u) is indeed a norm. .
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Inner Product of Vector
@ How to describe the direction relation between vectors, i.e. the angle

between them?
@ 2D Euclidean space R?: u; = [x; yi]" (i = 1,2)

2 2 2
[in = wolly = i ll3 + [fu2l3 — 2 ||urly [|uz2l, cos & (2)
T
s cosf — X1X2 + y1y2 _ uy uz _ (3)
uilly [lually  [lully [Juzll
y
uy
up
0
X
0]

Figure: Inner product and angel
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Norm and Inner Product of Vector Inner Product of Vector

Inner Product of Vector

T

® uj up is a function mapping two vectors into a scalar, called inner

product and denoted by

(ur, up) := ulTuz. (4)
@ Then, we have
cosf = U2 g g (5)
||U1||2 ||U2||2

@ Therefore, inner product and angle have a one-to-one relationship.

@ In vector spaces with higher dimensions as well as matrix and function
spaces to be described later on, the angle cannot be drawn. So, it is
necessary to use the inner product to define the angle between the
elements of each space.
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Norm and Inner Product of Vector Inner Product of Vector

Example

Example 2

Given vectors

|1 | -1 |1
u=llsv=L g Lw=E |-
Let the angle between u,v be ¢ and the angle between u, w be 6.
Calculation based on inner product yields

;
cosp=——V __0 = ¢=090°
ullo [vIl
T 1
cosHZ&:— = 0 = 45°.
ully Iwlly V2

We can verify the correctness of the calculation by drawing a figure.
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Norm and Inner Product of Vector Inner Product of Vector

Generalizations

@ Inner product between real-valued vectors u,v € R”
(u,v) :==u'v. (6)

@ Inner product between complex-valued vectors u,v € C"

(u,v) = u*v (7)
@ Angle between two vectors u, v
cosg = 2LV g g (8)
lullz vl

@ Reason for its definition
Complex-valued vector u and real-valued vector { ﬁgzg } are

one-to-one,

R((w ) = ) 3] | 509 |

N}
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Norm and Inner Product of Vector Inner Product of Vector

Properties of inner product

Q (x,ay + fz) = a(x,y) + B (x, z) holds for any scalars «a, 5 € F.

Q (x,y) = (y,x).
Q (x,x) >0and (x,x) =0iff x=0.

Q induced norm \/(u, u) = ||ul|,

Theorem 1

For any u,v € F", the following statements are true.

Q [(u,v)| <|ull,|Ivll, (Cauchy-Schwarz inequality). The equality hods
only when u = av (a is a constant), u =0 or v = 0.

@ |lu+v|5+ llu—vi3=2]ull}+2]v|3 (Parallelogram law)
Q |lu+v|5=ull3+||vl5 when u L v (Pythagoras law)
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Quadratic Form and Positive Definite Matrix Quadratic Form and Energy Function

Quadratic Form and Energy Function

o ax12 + 2bxyxo + cx22 of vector x = [x; x2]" is called a quadratic form,
usually related with energy of a physical system

@ Examples: kinetic energy mv2/2 of a mass m, rotational energy
Jw?/2 of a rigid body with inertia J

© System stability, or control performance are closely related to energy,
quadratic form often encountered in systems analysis and design.

©Q nD case

V(x) = Z Z bijxix;

i=1 j=1
:(b11X12 + b12X1X2 + -+ blnxlxn) + -
+ (bnlxnxl + bmaxpxo + -+ + bnnxr%) (9)
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Quadratic Form and Positive Definite Matrix Quadratic Form and Energy Function

Quadratic Form and Energy Function

Using xix; = xjx; and setting

bj +bji ., .
aii = bijj, aj = aji = U2 JI? 175./7 (10)
we can always write V/(x) as
V(x) =xTAx, A= (a;)=AT (11)

For example,

b
ax? + 2bxyxo + o4 =[x xz][z C] [2]

© Complex case: x € C”
V(x) = x*"Ax € R. (12)
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Quadratic Form and Positive Definite Matrix Positive Definite/Positive Semi-definite Matrices

Positive Definite/Positive Semi-definite Matrices

Energy is always positive. So the quadratic form describing energy
should also be positive.

Positive definite function: V(x) = x*Ax > 0 for any x # 0

Positive semi-definite function: V(x) = x*Ax > 0 for any x # 0

Positive definite matrix: Hermitian matrix A = A* satisfies x*Ax > 0
for any x # 0, denoted by A > 0.

Positive semi-definite matrix: x*Ax > 0 for any x # 0, denoted by
A>0.

Example: B*B > 0 for matrix B

- x*B*Bx=||Bx|3>0 Vx
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Quadratic Form and Positive Definite Matrix Positive Definite/Positive Semi-definite Matrices

Positive Definite/Positive Semi-definite Matrices

Theorem 2

When A € F"*" s Hermitian, the following statements hold.
O A > 0 iff its eigenvalues are all nonnegative.
Q A > 0 iff its eigenvalues are all positive.

© When A > 0, there exists B € ™" such that A is decomposed as
A = BB* where r > rank(A).
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Quadratic Form and Positive Definite Matrix Positive Definite/Positive Semi-definite Matrices
H
Schur’s Lemma

Lemma 1 (Schur's Lemma)

Partition Hermitian matrix X = X* as

X1 X12]
X =
[sz X2

in which Xi1, Xoo are square. Then, the following statements are true.
© X > 0 iff one of the following conditions is satisfied.
O Xo» >0, Xi1 — X12X5' X35 > 0.
Q Xi1>0, Xon — X1*2X1_11X12 > 0.
© X > 0 iff one of the following conditions holds.
© Xo >0, KerXp C KerXia, Xi1 — X12XJ, X7, > 0.
® Xu1 >0, KerXyy C KerXfy, Xoo — X5 X X1 > 0.
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Norm and Inner Product of Matrix Matrix Norm

Matrix Norm

@ Vector mapped by matrix

Au<—" A j«e— U

@ Matrix can be regarded as an amplifier, and vector as a signal.

@ Matrix norm can be regarded as the amplification rate of signal,
defined by the ratio of input and output vector norms.

@ Ratio of input and output vector norms is not a constant, varies with
the direction of input vector.

Example 3

Mapping u; =[10]7, u, =[01]" and uz =[1 1]7 /V2 by A= [ ; i ]
we get output vectors y; = [1 3], yo =[2 4]" and y3 = [3 7]7 //2 resp.
Therefore, the 2-norm ratio of input and output are resp \/10, 21/5, /29.
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Norm and Inner Product of Matrix Matrix Norm

Matrix Norm

||AU||

1A]ly = : (13)
u# 0 “ ||1
||AU||

1Al := sup 72 (14)
oo lull,
H U||

1Al (15)

I-norm ||All; = max Z|a,j| (column sum)
2-norm ||A]|, = AmaX(A A)

n
Infinity-norm ||Al|,, =  Mmax Z |ajj| (row sum)
I<m
<ism =
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Norm and Inner Product of Matrix Matrix Norm

Example 4 J

Prove the formula of 1-norm.

(Proof) According to the definition of vector's 1-norm,

|Aully = Z Zauuj < ZZ Jaillujl = (D lag)lu

i=1 |j=1 i=1 j=1 Jj=1 i=1
m n
<3 2= g bl
lAull,
- 53k
lul, = 155 2

This inequality is true for arbitrary vector u. So when the left side takes
the supremum w.r.t to u, the inequality is still satisfied. That is,
m
1Al < max; 52z, [ag].
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Norm and Inner Product of Matrix Matrix Norm

Next, assume that the column sum takes the maximum at the j*-th

column, i.e.
m
'21 |aij<| = 1r2a<xnz |aij]-
1=

Set u, = ej«, then ||u,|| =1 and

m m
<nz |2 = lgjagnz |ajj| [l

||AU*||1 _ ||AU*||1 _
= 1<< Z|3U| = [|All; > o <n2|au|

[y

m
[Aul, =

So, we have

|All; = max Z |aij]-

1<j<n
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Norm and Inner Product of Matrix Inner Product of Matrix

Inner Product of Matrix

@ Inner product of A, B € F™*": (Tr denotes trace)
(A, B) = Tr(A*B). (16)

@ Why the inner product of matrix is defined as such?
@ Denote the ith columns of A, B by aj, bj. Then,

Tr(A*B) = Z a; b = vec(A)*vec(B) = (vec(A),vec(B)). (17)
i=1

@ Inner product of matrices is equal to inner product of the vectors
formed by their resp columns.
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Norm and Inner Product of Function Signal Norm
Signal Norm

@ How to measure a response?
@ Good candidates

@ Absolute area

@ Maximal magnitude

@ Squared area

(b) Disturbance response

Figure: Disturbance attenuation
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Norm and Inner Product of Function Signal Norm

Frequently used signal norm

@ Il-norm (Figure (a).): |Jull; = fo |dt
@ 2-norm (Figure (b).): |lull, = fo u?(t

@ Infinity-norm (Figure (c).): [Jull, = SuptE[O,oo)

(a) 1-norm of signal (b) 2-norm of signal

Figure: Signal norms

u(t)

(c) Infinity-norm of
signal
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Norm and Inner Product of Function Signal Norm

An example

Example 5
Calculate the norms for the signal

u(t)=e3 t>0.

(Solution) Calculation following the definitions yields

o0 1 o0
= [~ e a=2 =y | eorar = VO,
A 3 Ve 6

-3t
ull,, = max|e =1
el = max|e=™]
Clearly, the values of various norms are different. v
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Norm and Inner Product of Function Inner Product of Signals

Inner Product of Signals

O Inner product for quadratically integrable signals u(t), v(t)

(0, v) :/ u(t)v(t)dt. (18)
0
© Inner product and norm of periodic functions
2 T
) =7 [ a7 (O, (19)
T Jo

2 T
lull = v/, a) = 7Auwmmw (20)

© How to describe the phase difference of sine waves?
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Norm and Inner Product of Function Inner Product of Signals

Phase difference of Signals

Q sin(wt + ¢): projection on the vertical axis of a vector rotating
counterclockwise with an angular velocity w from an initial angle ¢.

@ Phase difference of sin(wt) and sin(wt — ¢) can be thought of as the
angle between two vectors rotating at the same speed.

© How to use the inner product to express the phase angle?

Example 6
Look at u(t) = Asin(wt), v(t) = Bsin(wt — ¢).

2 T
(u,v) :AB?/ sin(wt) sin(wt — p)dt = ABcos ¢
0
{u,v)
[ fivil

Phase difference between two sine waves indeed has the same meaning as
the angle between two vectors in vector space.

lul = A, lvil=8B = cosp=

v

e November 8, 2016 26/ 35




Norm and Inner Product of Function Norm and Inner Product of Signals in Frequency Domain

Norm and Inner Product of Signals in Frequency Domain

@ Inner product
-~ w - . -
(1.8)=5- | FUw)atio)ds. (21)

@ Norm

mm=¢§/mwmmmwm (22)

. November 8,2016 27 / 35



Norm and Inner Product of Function Norm and Inner Product of Signals in Frequency Domain

Norm and Inner Product of Signals in Frequency Domain

Lemma 2

Assume that vector functions f(s), g(s) are quadratically integrable.
Then, the following statements hold.

(%) <a?, b§> =3ab <7A‘,§> for arbitrary a, b € C;

A A112
2=
o (7.7) =7,
(s ) <7A‘, H§> = <HN7A‘,§> when H(s) has no poles on jw axis;
O If A*(jw)A(jw) = I (Vw), then HA?Hz = HfH2

@ (4) means that 2-norm is invariant w.r.t. all-pass function

@ Time domain and frequency domain norms/inner products are equal
(Parseval’s theorem).
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Norm and Inner Product of Function Computation of 2-norm and Inner Product of Signals

Computation of 2-norm and Inner Product

@ Inner product
f(s),&(s) are both strictly proper, rational functions (vectors) with
real coefficients and have no purely imaginary poles
?,“>: Res 77 (—s)g(s 23
(F.2 2 gl T8 (23)
Ress; denotes the residue at the point s;.

@ Norm

lsll, = 1), = \/Z Res 57 (~5)8(s) (24)

s; denotes a pole of g(s).
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Norm and Inner Product of Function Computation of 2-norm and Inner Product of Signals

Computation of 2-norm and Inner Product

Example 7
Let u(t) be the input of G(s) =1/(s + 1), y(t) be the output.
(1) Calculate the 2-norm of unit impulse response g(t);

(2) For u(t) = e™>t, compute ||y|,.

(Solution) (1) First, G(—s)G(s) =1/(1 —s)(1+ s) has a pole p = —1 on the left
half-plane. The residue at the pole is

. . 1 1
S'_'[le(s +1)G(=s)G(s) = S'_'{El(s + 1)m =57 lgll, = 1/V2.
(2) Since &i(s) = 1/(s +5), y(s) is equal to 1/(s + 1)(s + 5) and has two poles
p = —1,—5. The residues at the stable poles are

. N N 1 . . . 1
Sl_'ml(s +1)y(=s)y(s) = 78’ Sh)nls(s +5)y(—95)y(s) = ~ 510"
So. Ilyll, = 1/v/&0. -
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Norm and Inner Product of Function Computation of 2-norm and Inner Product of Signals
Orthogonality of functions

Lemma 3

Assume that f(s) is a stable (vector) function, g(s) is an antistable
(vector) function without purely imaginary poles, both being strictly
proper. Then, there hold

" A2 A2 o
(g)=o. [+l - [+

This lemma shows that stable function is orthogonal to antistable function.

(Proof) As ?,é are strictly proper and have no imaginary poles, their inner
product exists. Also, since f7(—s)g(s) has no poles on the left-half plane,
according to (23) <1A‘,§ = 0 is true. The second equation comes from

Pythagoras theorem (refer to Theorem 1(3)). .
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Norm and Inner Product of Function System Norm
System Norm

@ Ho norm:

IGll, = \/ o | 16GwRd = \/ | e @)

g(t) = L7 [G(s)]: unit impulse response of transfer function G(s)

@ Implication: H, norm is the square root of the squared area of the
frequency response gain, equal to the square root of the squared area
of unit impulse response.

. November 8,2016 32/ 35



Norm and Inner Product of Function System Norm

System Norm

@ Hoo norm:
Gl = sup [|G(jw)| (26)

wE(—00,00)

@ Hoo norm is the maximal amplitude of the frequency response of
transfer function.

dB

161 w
N

Hoo NOrm
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Norm and Inner Product of Function System Norm
Example

Example 8
Calculate the Hy norm and H, norm of stable transfer function

10

¢O) = G0

(Solution) First, we calculate the unit impulse response of G(s).

10/ 1 | 0, ., 10
_ N _ _ > 0.
G(s) =3 (s+1 s+10> = g(t) =5 (e -e ™), 120

161, = /Ooo g(8)2dt = \/g

Thus, we get
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Norm and Inner Product of Function System Norm
Example

On the other hand,

100

GGw)P = (2 + 1)(w? + 100)

The solutions of

_dIGUw)P _ dIG)? dw? ) dIG(w)

0
dw dw? dw dw?

are w = 0 and w = oo. Since |G(joo)| = 0, we finally get

1Glloe = 1GGO)| = 1.
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