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The following conventions are used throughout the solution manual:

CLS: closed loop system

iff: if and only if



3

Chapter 2

Problem 2.1
The equation follows from

det

[

In B
−C Im

]

= det(Im) det(In+B ·I−1
m ·C) = det(In) det(Im+C ·I−1

n ·B)

Further, since cb is a scalar we have det(1 + cb) = 1 + cb.

Problem 2.2
When x, y ∈ R

n and a, b ∈ R, we have ax, by ∈ R
n due to property (b).

Then, by property (a) there holds ax+by ∈ R
n. Conversely, when ax+by ∈

R
n for any x, y ∈ R

n and a, b ∈ R, (a) follows by setting a = b = 1 and b = 0
leads to (b).

Problem 2.3

‖x‖1 = |1|+ |2|+ |3| = 6

‖x‖2 =
√

12 + 22 + 32 = 14

‖x‖∞ = max{|1|, |2|, |3|} = 3

Problem 2.4

‖u‖2 =
√

02 + 12 = 1

‖v‖2 =
√

12 + 12 =
√
2

〈u, v〉 =
[

0 1
]

[

1
1

]

= 1

cos θ =
〈u, v〉

‖u‖2 ‖v‖2
=

1√
2

⇒ θ =
π

4

Problem 2.5
It is easy to see that conditions (1) and (2) are satisfied. As for condition (3),
it follows from 0 = ‖x‖22 = x21 + x22 + x23 = 0 ⇔ x1 = x2 = x3 = 0. Further,

Cauchy-Schwarz inequality x1x2+y1y2+z1z2 ≤
√

x21 + y21 + z21
√

x22 + y22 + z22
gives the triangle inequality condition (4).
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Problem 2.6
By definition, when y1, y2 ∈ ImA there exist x1, x2 ∈ F

n such that y1 =
Ax1, y2 = Ax2. Since αx1 + βx2 ∈ F

n for any α, β ∈ F, αy1 + βy2 =
αAx1 + βAx2 = A(αx1 + βx2) ∈ ImA is true. This means that ImA ⊂ F

m

is a subspace.
Similarly, x1, x2 ∈ KerA ⇒ Ax1 = Ax2 = 0 ⇒ A(αx1 + βx2) = αAx1 +
βAx2 = 0 ⇒ αx1 + βx2 ∈ KerA. That is, KerA ⊂ F

n is also a subspace.

Problem 2.7
The two row vectors of matrix A are obviously linearly independent. So

rankA = 2. For any nonzero vector x =





x1
x2
x3



,

Ax =

[

x1
x3

]

=

[

1
0

]

x1 +

[

0
1

]

x3.

So, the bases of ImA are

[

1
0

]

,

[

0
1

]

and that of KerA is





0
1
0



.

Problem 2.8
First, b ∈ ImA since

b =





1
0
1



 =





2
−3
−1



+





−1
3
2



 .

Further, the matrix A has full column rank so that the solution is unique. In

fact, it is x =

[

1
1

]

. However, for b =





1
1
1



, rank[A b] = 3 >rank(A) = 2.

So no solution exists in this case.

Problem 2.9

x4 = 1 is obvious. Solving for x2 first, then x1, we get x =









x3 − 1
−2x3
x3
1









in

which x3 is arbitrary. That is, the solution has one free parameter.
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Problem 2.10

Writing the equation in a vector form w.r.t. the unknown vector







u[n− 1]
...

u[0]






,

it is straightforward to see that rank [b Ab · · · An−1b] = n is the necessary
and sufficient condition because x[0], x[n] are arbitrary.

Problem 2.11
(a) d

dx(Ax− b)T (Ax− b) = 2xTATA− 2bTA = 0 ⇒ x = (ATA)−1AT b.
(b) Set a Lagrange function as J = xTx + λT (Ax − b) in which λ is the
multiplier. The solution is obtained from solving the simultaneous equations:

∂J

∂x
= 2xT + λTA = 0,

∂J

∂λ
= (Ax− b)T = 0.

Solving for x from the first equation, we get x = −ATλ/2. Its substitution
into the second equation leads to AATλ = −2b ⇒ λ = −2(AAT )†b. So
finally x = AT (AAT )†.

Problem 2.12
For matrix B, the eigenvalues λ1 =

√
3 and λ2 = −

√
3 are obtained from

solving the characteristic equation

|λI −B| = λ2 − 3 = 0.

Meanwhile, the corresponding eigenvectors u1 =

[

1√
3

]

and u2 =

[

1

−
√
3

]

come from the definition of eigenvector:

(λI −B)u = 0.

For matrix A, its eigenvalues are λ1 = −3, λ2 = 1 and the eigenvectors are

v1 =

[

1
−1

]

and v2 =

[

1
1

]

.

Problem 2.13
The eigenvalues are λ1 = λ2 = 1, λ3 = 0 and there are two eigenvectors

u1 =





1
0
0



 , u3 =





1
−1
0



 and a generalized eigenvector u2 =





0
1
1



.

Setting a transformation matrix as T = [u1 u2 u3], we have

T−1AT =

[

J1 0
0 0

]

, J1 =

[

1 1
0 1

]

.
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Calculation based on T−1AkT = (T−1AT )k = diag(Jk
1 , 0) yields

Jk
1 =

[

1 k
0 1

]

⇒ Ak = T · diag(Jk
1 , 0) · T−1 =





1 1 k − 1
0 0 1
0 0 1



 .

Problem 2.14
A function analytic in a domain containing the origin can be expanded as

f(λ) = f(0) + f ′(0)λ +
1

2!
f (2)(0)λ2 + · · · + 1

n!
f (n)(0)λn + · · · .

So,

f(A)x =

[

f(0)I + f ′(0)A+
1

2!
f (2)(0)A2 + · · · + 1

n!
f (n)(0)An + · · ·

]

x

= f(0)x+ f ′(0)λx+
1

2!
f (2)(0)λAx + · · ·+ 1

n!
f (n)(0)λAn−1x+ · · ·

= f(0)x+ f ′(0)λx+
1

2!
f (2)(0)λ2x+ · · ·+ 1

n!
f (n)(0)λ2An−2x+ · · ·

...

= f(0)x+ f ′(0)λx+
1

2!
f (2)(0)λ2x+ · · ·+ 1

n!
f (n)(0)λnx+ · · ·

= f(λ)x.

Problem 2.15
(a) Suppose the opposite, i.e., q1, . . . , qn are linearly dependent. Then, there
exist α1, . . . , αn and at least one of them is nonzero such that α1q1 + · · ·+
αnqn = 0 holds. Pre-multiplying A to this equation repeatedly, we have
α1λ

k
1q1 + · · ·+ αnλ

k
nqn = 0 (k = 0, 1, 2, . . .). So,

[

α1q1 · · · αnqn
]







1 λ1 · · · λn−1
1

...
...

...
...

1 λn · · · λn−1
n






= 0.

It is well known that the second matrix is nonsingular when all λi are dis-
tinct. Then, all αiqi are zero vectors and at least one eigenvector qk is zero.
This contradicts the definition of eigenvector. So, q1, . . . , qn must be linearly
independent and as the result Q is nonsingular.
(b) AQ = Qdiag · (λ1, · · · , λn) ⇒ PA = diag(λ1, · · · , λn)P ⇒ piA = λipi.
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Problem 2.16
Owing to Ax = λx ⇒ x∗A∗ = x∗A = λx∗, there holds λx∗x = x∗Ax =
(x∗Ax)∗ = λx∗x ⇒ λ = λ. So λ ∈ R. Further, λx∗x = x∗Ax ≥ 0 when
A ≥ 0, so λ ≥ 0.

Problem 2.17
Let S = Im T1 and T1 have full column rank. According to Theorem 2.7(1)
there is a matrix A11 satisfying AT1 = A11T1. Suppose that λ is an eigen-
value of A11, its eigenvector being u 6= 0. Then, A11u = λu ⇒ AT1u = λT1u
holds. Since T1 has full column rank, x = T1u 6= 0 ∈ S becomes an eigen-
vector of A.

Problem 2.18
A1 > 0 follows immediately from a direct application of Schur’s lemma, i.e.

1 > 0, 2− 1× (1)−1 × 1 = 1 > 0.

In proving A2 > 0, we may reduce the 3-dimensional problem into an equiv-
alent 2-dimensional one:

[

2 1
1 1

]

−
[

1
1

]

× (2)−1 ×
[

1 1
]

=

[

3
2

1
2

1
2

1
2

]

by using Schur’s lemma. Then, application of Schur’s lemma again on this
new problem leads to the conclusion.

Problem 2.19
For matrix B, the singular values satisfying

|σ2I −BTB| = (σ2 − 1)(σ2 − 9) = 0.

are σ1 = 3 and σ2 = 1, their corresponding singular vectors satisfy

(σ2I −BTB)v = 0

and are obtained as v1 =

[

1
0

]

and v1 =

[

0
1

]

.

As for matrix A, its singular values are σ1 =
√

7 + 2
√
10, σ2 =

√

7− 2
√
10.

The singular vectors are omitted as they are messy.
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Problem 2.20
According to Problem 2.16, the eigenvalue λi in Axi = λixi is a real number.
So, from A∗Axi = λA∗xi = λiAxi = λ2

i xi we see that the singular value σi
satisfies the relation

σi = |λi|.

Problem 2.21

‖A‖1 = 3, ‖A‖2 = σ1 =

√

7 + 2
√
10, ‖A‖∞ = 5

‖B‖1 = 3, ‖B‖2 = σ1 = 3, ‖B‖∞ = 3

Problem 2.22
On ‖A‖2:

‖Au‖22 = u∗A∗Au ≤ λmax(A
∗A) ‖u‖22

⇒‖Au‖2
‖u‖2

≤
√

λmax(A∗A).

Since the right hand side is independent of the arbitrary vector u, this
inequality holds even if the left hand side takes its supremum. That is,
‖A‖2 ≤

√

λmax(A∗A). To show the converse, we focus on the eigenvector v
of the largest singular value. In this case,

‖Av‖22 = λmax(A
∗A) ‖v‖22 ⇒ sup

‖Au‖2
‖u‖2

≥ ‖Av‖2
‖v‖2

=
√

λmax(A∗A).

Therefore, the equality must be true.
On ‖A‖1:
Let i∗ be the row number at which

∑

j |ai∗j | = maxi
∑

j |aij | and u∗ be a
special vector whose jth element is sgn(ai∗j) (sgn(a) is the signum function
defined by sgn(a) = 1 ∀a > 0, sgn(0) = 0 and sgn(a) = −1 ∀a < 0). Then,
the conclusion follows from

‖Au∗‖∞ =
∑

j

|ai∗j | ‖u∗‖∞ = max
i

∑

j

|aij | ‖u∗‖∞

as well as

‖Au‖∞ = max
i

|
∑

j

aijuj | ≤ max
i

∑

j

|aij ||uj | ≤ max
i

∑

j

|aij | max
j

|uj |

= max
i

∑

j

|aij | ‖u‖∞ .
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Problem 2.23
Omitted.

Problem 2.24
It is derived by differentiating the two sides of A−1(t)A(t) = I:

d

dt
(A−1(t)) ·A(t) +A−1(t) · d

dt
(A(t)).

Problem 2.25
The results are derived by expanding each scalar function first, then calculate
in accordance with the definition.
As an example, we look at

xTAx =a11x
2
1 + · · ·+ a1ix1xi + · · ·+ a1nx1xn

...

+ ai1xix1 + · · ·+ aiix
2
i + · · ·+ ainxixn

...

+ an1xnx1 + · · · + anixixn + · · ·+ annx
2
n.

It is easy to see that

∂(xTAx)

∂xi
=a1ix1 + · · · + a(i−1)ixi−1 + a(i+1)ixi+1 + · · ·+ a1nx1xn

+ ai1x1 + · · ·+ 2aiixi + · · ·+ ainxn

=2
[

ai1 · · · aii · · · ain
]

x

in which aij = aji has been used. So

∂(xTAx)

∂x
= 2(Ax)T .

Problem 2.26
The functions in (a) and (c) satisfy all conditions on norm except ‖u‖ =
0 ⇔ u = 0 (such a function is called a semi-norm). The function in (b) is
a norm.
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Problem 2.27
First,

G(s) =
−1/3

s+ 2
+

4/3

s+ 5
⇒ g(t) = −1

3
e−2t +

4

3
e−5t.

Then ‖G‖2 = ‖g‖2 = 1
30

√

523
7 is calculated based on the definition of ‖g‖2.

d
dt |G(jω)|2 = 0 has solutions ω2 = 0, 6

√
2 − 1, ∞. But the maximum is

taken at ω =
√

6
√
2− 1. So, ‖G‖∞ ≈ 0.151.

Problem 2.28
First,

G(s) =
4/9

s+ 1
+

5/9

s+ 10
⇒ g(t) =

4

9
e−t +

5

9
e−10t.

Then ‖G‖2 = ‖g‖2 =
√

7/44 is obtained by integration.

Second,

G(s)G(−s) =
(s+ 5)(−s + 5)

(s + 1)(s + 10)(−s + 1)(−s + 10)

has two poles −1, −10 in the RHP. So,

‖G‖22 =
(s+ 5)(−s + 5)

(s+ 10)(−s + 1)(−s+ 10)

∣

∣

∣

s=−1
+

(s+ 5)(−s+ 5)

(s+ 1)(−s+ 1)(−s + 10)

∣

∣

∣

s=−10

=
7

44
.

Problem 2.29
Note that |D(jω)| = 1 ⇒ |D(jω)G(jω)| = |G(jω)|, |A(jω)| = 1 ⇒ |A(jω)G(jω)| =
|G(jω)|. The conclusions follow from the definition of H2 and H∞ norms
directly.

Problem 2.30
Noting (f̂∗ĝ)∗ = ĝ∗f̂ , it is trivial to show that

〈

f̂ , ĝ
〉

=
1

2π

∫ ∞

−∞
f̂∗(jω)ĝ(jω)dω

satisfies
〈

f̂ , aĝ + bĥ
〉

= a
〈

f̂ , ĝ
〉

+ b
〈

f̂ , ĥ
〉

,
〈

f̂ , ĝ
〉

=
〈

ĝ, f̂
〉

. Further,
〈

f̂ , f̂
〉

=
∥

∥

∥
f̂
∥

∥

∥

2

2
≥ 0, and

〈

f̂ , f̂
〉

= 0 iff f̂(ω) ≡ 0.
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Problem 2.31
1 and 2 are trivial. We prove 3 and 4.

〈

f̂ ,Hĝ
〉

=
1

2π

∫ ∞

−∞
f̂∗(jω) ·H(jω)ĝ(jω)dω

=
1

2π

∫ ∞

−∞
(H∗(jω)f̂ (jω))∗ĝ(jω)dω

=
〈

H∼f̂ , ĝ
〉

.

From this property, it is immediate that
∥

∥

∥
Af̂

∥

∥

∥

2

2
=

〈

Af̂,Af̂
〉

=
〈

A∼Af̂, f̂
〉

=
〈

f̂ , f̂
〉

=
∥

∥

∥
f̂
∥

∥

∥

2

2
.

Problem 2.32
〈

f̂ , ĝ
〉

= 0 is proved by using the residue method. Since an antistable

function is strictly proper, its value at s = rejθ → 0 as r → ∞. So,

〈

f̂ , ĝ
〉

=

∮

C
f̂∼(s)ĝ(s)ds

holds in which C is a closed integration path consisting of the imaginary axis
and a half circle in the left half plane with an infinity radius. This integral
is zero because f̂∼(s)ĝ(s) does not have any poles in the left half plane.
Then, it follows that

∥

∥

∥
f̂ + ĝ

∥

∥

∥

2
=

∥

∥

∥
f̂
∥

∥

∥

2
+ ‖ĝ‖2 + 2ℜ

〈

f̂ , ĝ
〉

=
∥

∥

∥
f̂
∥

∥

∥

2
+ ‖ĝ‖2 .
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Chapter 3

Problem 3.1
By definition, for any x1, x2 ∈ C and real numbers α1, α2 with α1 +α2 = 1,
there holds α1x1 + α2x2 ∈ C. So, β1(α1x1 + α2x2) + β2x3 ∈ C for any
x2 ∈ C and real numbers β1, β2 with β1 + β2 = 1. Setting θ1 = α1β1, θ2 =
α2β1, θ3 = β2, we have θ1 + θ2 + θ3 = 1.
Conversely, given θ1, θ2, θ3 with θ1 + θ2 + θ3 = 1, we may set β2 = θ3 and
β1 = θ2 + θ3. Further, we can set

α1 =
θ1
β1

, α2 =
θ2
β1

if β1 6= 0

α1, α2 arbitrary with α1 + α2 = 1 if β1 = 0.

Reversing the preceding argument leads to the conclusion.

Problem 3.2
For any x1, x2 in the half-plane and λ1, λ2 ≥ 0 with λ1 + λ2 = 1,

aT (λ1x1 + λ2x2) = λ1a
Tx1 + λ2a

Tx2 ≤ λ1b+ λ2b = b.

That is, λ1x1 + λ2x2 is also in the half-plane. Therefore, it is convex.

Problem 3.3
Make the following variable transformation:

x1 =
y1√
λ1

, x2 =
y2√
λ2

, x3 =
y3√
λ3

.

Then, the ellipsoid is transformed into a unit ball:

x21 + x22 + x23 ≤ 1.

The volume of a unit ball is 4
3π. Since dy1dy2dy3 =

√
λ1dx1 ·

√
λ2dx2 ·√

λ3dx3 =
√
λ1λ2λ3dx1dx2dx3 and the volumes are their respective integrals

within the ellipsoid/ball, the volume of the ellipsoid becomes
∫∫∫

dy1dy2dy3 =
√

λ1λ2λ3

∫∫∫

dx1dx2dx3 =
4

3
π
√

λ1λ2λ3.

Problem 3.4
Similar to Problem 3.2, for any x1, x2 ∈ P and λ1, λ2 ≥ 0 with λ1 + λ2 = 1,
all of the following hold:

aT1 (λ1x1 + λ2x2) ≤ b1, aT2 (λ1x1 + λ2x2) ≤ b2, cT (λ1x1 + λ2x2) = d.
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So, the set P is convex.

Problem 3.5
omitted.

Problem 3.6
For any x1, x2 ∈ S+ and λ1, λ2 ≥ 0 with λ1 + λ2 = 1, at least one of λiXi

(i = 1, 2) is positive definite. So, λ1X1+λ2X2 > 0 always holds. Therefore,
S+ is a convex set. In fact, it is a convex cone.

Problem 3.7
(a) → (b): It is easy to see, by the properties Tr(AT ) = Tr(A), Tr(AB) =
Tr(BA) and Tr(A + B) = Tr(A) + Tr(B) of matrix trace, that Tr((M +
MT )X) = 2Tr(MTX). Further, any X < 0 can be expressed as X = −Y Y T

by a nonsingular matrix Y , and M +MT ≥ 0 ⇒ −Y T (M +MT )Y ≤ 0. So,
Tr((M +MT )X) = Tr(−Y T (M +MT )Y ) ≤ 0 which implies (b).
Conversely, the symmetric matrix M+MT can be diagonalized by a unitary
matrix T (T TT = TT T = I). If an eigenvalue λk of M +MT is negative,
then for X = −diag(1, · · · , ρ, · · · , 1) < 0 we have

Tr[(M+MT )X] = Tr[T T (M+MT )T ·T TXT ] = −(λ1+ · · ·+λkρ+ · · ·+λn).

So, as ρ → ∞ Tr[(M + MT )X] = 2Tr[MTX] < 0 which contradicts the
given condition. Therefore, M +MT ≥ 0.
Moreover, it is clear from the proof that the strict inequality case is also
true which will be used in the next problem.

Problem 3.8
Let us consider the infeasibility problem: there is no X > 0 satisfying
XA+ATX < 0.
First of all. we point out that from the proof of Example 3.3 (with the
domain restricted to X > 0), ”there is no X > 0 satisfying XA+ATX < 0”
is equivalent to ”there is no W = W T ≥ 0 satisfying Tr[(XA+ATX)W ] ≥ 0
for all X > 0”.
Since Tr[(XA + ATX)W ] = 2Tr(XAW ) = Tr[(AW + WAT )X], the latter
statement is equivalent to ”there is no W = W T ≥ 0 satisfying Tr[(AW +
WAT )X] ≥ 0 for all X > 0”. Then, by Problem 3.7 this is equivalent to
”there is no W = W T ≥ 0 satisfying AW +WAT ≥ 0”.

Problem 3.9
Obviously, f(X)I − X ≥ 0 holds for any symmetric matrix X. Then for
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α1, α2 ≥ with α1 + α2 = 1 and symmetric matrices X,Y ,

[α1f(X) + α2f(Y )]I − [α1X + α2Y ] = α1[f(X)I −X] + α2[f(Y )I − Y ] ≥ 0

holds. Since f(α1X + α2Y ) = λmax(α1X + α2Y ) is the smallest number in
all p satisfying pI − [α1X + α2Y ] ≥ 0, there must be

α1f(X) + α2f(Y ) ≥ f(α1X + α2Y ),

i.e., f(X) is convex.

Problem 3.10
According to the first-order condition, f(x) is convex iff for any x, y ∈ domf ,

f(y)− f(x) ≥ ∇f(x)(y − x).

Then, for any ∆x

f(x)− f(x−∆x) ≥ ∇f(x−∆x)∆x

f(x)− f(x+∆x) ≥ −∇f(x+∆x)∆x

⇒ 2f(x)− f(x+∆x)− f(x−∆x) ≥ [∇f(x−∆x)−∇f(x+∆x)]∆x

In the last inequality, as ∆x → 0, the left side tends to zero and the right
side to −2(∆x)T∇2f(x)∆x. This implies ∇2f(x) ≥ 0 because the direction
of ∆x may be arbitrary.

Problem 3.11
X = ℜ(X) + jℑ(X) is Hermitian iff ℜ(X)T = ℜ(X), ℑ(X)T + ℑ(X) = 0.
Further, X ≥ 0 is equivalent to

(u+ jv)∗[ℜ(X) + jℑ(X)](u + jv) ≥ 0

for any real vectors u, v with compatible dimension. Owing to X∗ = X,
the quadratic function on the left side takes real value and its expansion
becomes

[

u
v

]T [

ℜ(X) −ℑ(X)
ℑ(X) ℜ(X)

] [

u
v

]

.

Finally, the equivalence is obtained due to

u+ jv 6= 0 ⇔
[

u
v

]

6= 0.
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Problem 3.12
The transformation is done by setting

c =

[

1
0

]

, z =

[

λ
x

]

, F (z) =

[

λI −A(x) 0
0 B(x)

]

.

Problem 3.13
By Schur’s lemma,

[

X I
I Y

]

> 0 ⇔ X > 0, Y −X−1 > 0.

Note that

0 < Y −X−1 = X−1/2 ·X−1/2(XY − I)X1/2 ·X−1/2

is equivalent to X−1/2(XY − I)X1/2 > 0. This condition is equal to the
eigenvalue condition λi[X

−1/2(XY − I)X1/2] = λi(XY − I) > 0 (for all i).
Finally, λi(XY − I) = λi(XY )− 1 > 0 for all i iff λmin(XY ) > 1.
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Chapter 4

Problem 4.1
Controllable and observable.

Problem 4.2
(a) It follows from the following controllability and observability matrices:

C =

[

1 1
1 1

]

, O =

[

1 0
1 0

]

.

(b) A block diagram can be drawn based on the dynamics ẋ1 = x1+u, ẋ2 =
x2+u and y = x1. x1 and x2 have the same dynamics so that their difference
can not be controlled. Meanwhile, x2 does not reach the output and does
not affect ẋ1, so it cannot be observed.

Problem 4.3
Let the dimension of G(s) be m. Owing to the given condition, z is a zero
iff rank(G(z)) < normalrank(G(s)) = m ⇔ |G(z)| = 0.

Problem 4.4
z = 3±

√
13

2 .

Problem 4.5
The transfer functions are calculated respectively as

Pu(s) =

1
JMJL

s(s2 + k
JL

+ k
JM

)
, Pd(s) =

1
JL

(s2 + k
JM

)

s(s2 + k
JL

+ k
JM

)
.

Pd(s) has two imaginary zeros while Pu(s) has none. The two poles on the
imaginary axis move toward the zeros of Pd(s) as the inertial ratio JL/JM
increases. But contrary to the case of motor speed measurement, the inertia
ratio only has a limited influence on the difficulty of control because Pu(s)
does not have any zero.

Problem 4.6
rank(XY ) = rank(X) holds for nonsingular Y (as they have the same num-
ber of independent row vectors). The result follows from

[

A+BF − sI B
C +DF D

]

=

[

A− sI B
C D

] [

I 0
F I

]

.
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Problem 4.7
It is easily proved by switching the roles of input and output, i.e., set y as
the input and u as the output.

Problem 4.8
Let the states of G1 and G2 be denoted as x1 and x2 respectively. Focusing
on their input/output relations and eliminate the connecting signals, the
formulae are obtained which correspond to two different alignment of states:
[

x1
x2

]

or

[

x2
x1

]

.

Problem 4.9
(a) Sufficiency: First, ‖y(t)‖2 ≤

∫ t
0 ‖g(τ)‖2 ‖u(t− τ)‖2 dτ ≤ c

∫ t
0 ‖g(τ)‖2 dτ

since ‖u(t)‖2 is bounded at any t. Then the sufficiency is obvious.

(b) Necessity: For the given u, we have y(t) =
∫ t
0 ‖g(τ)‖2 u1(τ)dτ and

uT1 (τ)u1(τ) = 1. Then, we have

yT (t)y(t) =

∫ t

0
‖g(τ)‖2 uT1 (τ)dτ ·

∫ t

0
‖g(τ)‖2 u1(τ)dτ

=

∫ t

0
‖g(τ)‖2

[
∫ t

0
‖g(τ)‖2 uT1 (τ)u1(τ)dτ

]

dτ

=

∫ t

0
‖g(τ)‖2

[
∫ t

0
‖g(τ)‖2 dτ

]

dτ

=

[
∫ t

0
‖g(τ)‖2 dτ

]2

.

The necessity is a direct consequence of the stability requirement yT (∞)y(∞) <
∞.

Problem 4.10
ℜ(λi(A)) < −σ ⇔ ℜ(λi(A + σI)) < 0 ⇔ (A + σI) is stable. This is
equivalent to the existence of a matrix P > 0 satisfying

0 > (A+ σI)TP + P (A+ σI) = ATP + PA+ 2σP.

Problem 4.11
The CLS is ẋ = (A+BF )x. ℜ(λi(A+BF )) < −σ ⇔ ∃P > 0 such that

PA+ATP + 2σP + PBF + F TBTP < 0.
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Substitution of (BTP )⊥ = P−1BT
⊥ yields the solvability condition

(BT
⊥)

T (AQ+QAT + 2σQ)BT
⊥ < 0, Q = P−1 > 0.

As for the variable change method, we multiply the inequality PA+ATP +
2σP + PBF + F TBTP < 0 by Q = P−1 from left and right and get

AQ+QAT + 2σQ+BFQ+QF TBT < 0.

Then, the result becomes

AQ+QAT + 2σQ+BM +MTBT < 0, M = FQ.

Problem 4.12
Using yT y = xTCTCx = −xT (PA+ATP )x = − d

dt(x
TPx) and

x(∞) = 0, we have

∫ ∞

0
yT (t)y(t)dt = −

∫ ∞

0
d(xTPx)

= xT (0)Px(0) − xT (∞)Px(∞)

= xT (0)Px(0).

Problem 4.13
Lc is the solution of Lyapunov equation

ALc + LcA
T +BBT = 0.

This equation can be transformed to

(T−1AT )(T−1LcT
−T ) + (T−1LcT

−T )(T−1AT )T + T−1BBTT−T = 0.

So, the controllability Grammian of the new realization is L̂c = T−1LcT
−T .

It also may be shown based on the integration formula Lc =
∫∞
0 eAtBBT eA

T tdt.

L̂o = T TLoT follows similarly.
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Chapter 5

Problem 5.1
(a) Via Routh-Hurwitz criterion, the stability range is obtained as −4 <
k < 0.

(b) According to the final value theorem of Laplace transform,

ŷ(s) =
P

1 + PK
d̂(s) =

2

p(s)
⇒ y(∞) = lim

s→0
sŷ(s) = 0.

(c) Similarly,

ê(s) =
1

1 + PK
r̂(s) =

2(s + 1)

p(s)
⇒ e(∞) = 0 ⇒ lim

t→∞
y(t) = r(t) = sin 2t.

The reason is that controller K has an integrator so that both reference
tracking and disturbance rejection can be achieved w.r.t. step signals.

Problem 5.2
(a) The stability condition is k > 0.

(b) e(∞) = 0

(c) y(∞) = 1
k 6= 0

Asymptotic tracking of step reference is attained because the loop gain L =
PK has an integrator. Meanwhile, since the controller K does not has any
integrator the step disturbance cannot be rejected completely.

Problem 5.3
(a) The same as the preceding problem

(b) e(∞) = 0

(c) y(∞) = 0

In the present case, the controller K has an integrator and can realize both
the step reference tracking and the step disturbance rejection.

Problem 5.4
(a) Stability range: k > 0.

(b) As e(∞) = − 1
k , we have |e(∞)| = 1

k < 0.05 ⇒ k > 20.

Problem 5.5

1. Select a sufficiently rich set of frequency {ω1, ω2, . . . , ωN}.
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2. Apply sinusoidal input ui(t) = cosωit on the system, and measure the
steady-state output yi(t) = Ai cos(ωit+ φi). Then, a pair of gain and
phase angle data is obtained:

|G(jωi)| = Ai, ∠G(jωi) = φi

3. Repeating Step 2 until full sets of gain and phase are obtained.

4. Determine a rational function G(s) so that its frequency response fits
approximately the measured data {|G(jωi)|, ∠G(jωi)} at all frequen-
cies.

Problem 5.6
Consult any standard textbook on the classical control.

Problem 5.7
The tracking error w.r.t. the unit step reference is ê(s) = 1

1+L
1
s . Suppose

that p is a real and positive pole of L, then we have

ê(p) = 0 =

∫ ∞

0
e(t)e−ptdt.

e(t) > 0 holds for all t ∈ (0, t0) when t0 is sufficiently small. as a result,
we have e(t)e−pt > 0 before the time instant t0. So, there must be a time
interval after t0 in which e(t)e−pt < 0 ⇒ e(t) < 0. This means that overshoot
occurs.

Problem 5.8
Undershoot occurs whenever the system has real and positive zeros. Since
A-type undershoot happens iff the number of such zeros is odd, so when the
number is even the undershoot must be B-type.

Problem 5.9
Use MATLAB. The response speed, i.e., the rise time, is rough inversely
proportional to the bandwidth.
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Chapter 6

Problem 6.1
(a) As AnB is a linear combination of B,AB, . . . , An−1B due to Cayley-
Hamilton theorem, AIm C ⊂ Im C is obvious.

(b) Then, according to Corollary 2.1 there exists a matrix A1 ∈ R
k×k such

that

A
[

q1 · · · qk
]

=
[

q1 · · · qk
]

A1.

(c) Clearly, we can find vectors qk+1, . . . , qn such that

T =
[

q1 · · · qk qk+1 · · · qn
]

is nonsingular. Then, by setting

[

A12

A2

]

= T−1A
[

qk+1 · · · qn
]

,

we have

AT = T

[

A1 A12

0 A2

]

.

Further, since any column of matrix B belongs to Im C = span{q1, · · · , qk},
it becomes a linear combination of {q1, · · · , qk}. So, by collecting these
combination coefficients as a matrix B1 we obtain.

B = T

[

B1

0

]

.

Problem 6.2
The state feedback gain is f = −[9 3].

Problem 6.3
(a) State feedback gain: f = −[0 3]

(b) The designed input is u = fx = −3 × [0 1]x = −3y, which is a static
output feedback.

Problem 6.4
(a) The poles of plant are p1 = p2 = 2, p3 = −1. Since rank[A − p3I b] =
2 < 3 the pole p3 is not controllable so that it cannot be moved by feedback.
On the other hand, the assigned CLS poles do not contain p3 = −1, so such
pole placement is impossible.
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(b) In this case, the uncontrollable pole −1 is contained in the assigned
CLS poles. So, pole placement is possible and the state feedback gain is
f = −[6 6 0].

(c) In this case, the plant is fully controllable and the CLS poles can be
placed arbitrarily. In fact, f = −1

9 [120 62 1].

Problem 6.5
(a) Unstable since the poles are λ = 5,−1.

(b) Controllable and observable

(c) State feedback gain: f = [11 − 7]

(d) Observer gain gain: l =

[

−11
29

]

(e) Set D = [0 1] ⇒ S = I2. Then

T = A22 + lA12 = 2 + l × (−1) = −3 ⇒ l = −5.

Finally, the minimal order observer and the state estimate are given by

ż = −3z + 26y + u, x =

[

y
5y + z

]

.

Problem 6.6
Substitution of u = ky = kcx into ẋ = Ax+ bu yields ẋ = (A+ kbc)x. Since
|sI − (A+ kbc)| = s2 − ks− (k + 1) the CLS is stable if k < −1.

Problem 6.7
(a) State feedback gain: f = −[2 3]

(b) Observer gain: l = −
[

9
20

]

Problem 6.8

(a) Expansion of the state equation leads to (x12 =

[

x1
x2

]

)

ẋ12 =

[

2 1
0 2

]

x12 +

[

0
1

]

u, ẋ3 = −x3, y = x3.

y does not have any information on x12 so the observer cannot be designed.

(b) Observer gain: l = −





34/3
34
2/3




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(c) One may select D =

[

0 1 0
0 0 1

]

. The rest is omitted.

Problem 6.9
y(t) ≡ 0 ⇔ 0 ≡ ŷ(s) = C(sI−A−BF )−1Dû(s) ⇔ C(sI−A−BF )−1D ≡ 0.
Expanding this equality, we obtain

C(sI −A−BF )−1D =
CD

s
+

C(A+BF )D

s2
+

C(A+BF )2D

s3
+ · · · ≡ 0

⇔ C(A+BF )kD = 0 (∀k = 0, 1, 2 . . .).

The conclusion is then derived from Cayley-Hamilton theorem.
In an SISO system with a relative degree r, there holds cb = cAb = · · · =
cAr−2b = 0, cAr−1b 6= 0. Hence,

cd = 0, 0 = c(A+ bf)d = cAd, 0 = c(A+ bf)2d = cA(A+ bf)d = cA2d,

. . . , 0 = c(A+ bf)r−1d = cAr−2(A+ bf)d = cAr−1d

and

cb = 0, c(A + bf)b = cAb = 0, c(A + bf)2b = cA(A+ bf)b = cA2b = 0,

. . . , c(A+ bf)r−1b = cAr−2(A+ bf)b = cAr−1b 6= 0

must be true. When it holds, 0 = c(A + bf)rd = c(A + bf)r−1Ad +
c(A + bf)r−1bfd = cAr−1d + cAr−1bfd ⇒ f = −(cAr−1b)−1cAr. Then,
for any higher order k > r, c(A + bf)kd = cAr−1(A + bf)k−r+1d = (cAr +
cAr−1bf)(A+ bf)k−rd = 0 and the disturbance rejection condition is satis-
fied.

Problem 6.10
Owing to the structure of S, we have CS−1 =

[

I 0
]

. Then

[

SAS−1 − λI
CS−1

]

=





A11 − λI A12

A21 A22 − λI
I 0



 .

So obviously

[

A12

A22 − λI

]

must have full column rank for any λ. This

implies the observability of (A12, A22).
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Chapter 7

Problem 7.1
e(∞) = 0 ⇔ Q(0) = 1/P (0) = 2 must be satisfied. A first-order controller
K(s) = 2(s + 2)/s is obtained by setting Q(s) = 2. Another solution is
Q(s) = P−1(s)/(ǫs + 1) ⇒ K(s) = (s+ 2)/ǫs.

Problem 7.2
Since P (0)Q(0) = 1, asymptotic tracking of step reference is guaranteed
automatically. For the ramp reference,

e(∞) = lim
s→0

sê(s) = lim
s→0

(1− PQ)

s
= lim

s→0

ǫ

ǫs+ 1
== ǫ.

So, |e(∞)| ≤ 0.05 ⇒ 0 < ǫ ≤ 0.05 and K(s) = 20(s + 2)/s.

Problem 7.3

e(∞) = 0 ⇔ ê(s) = (1− PQ)
1

s2
=

s2 + (3− a)s+ (2− b)

s2(s+ 1)(s + 2)

must be stable, which in turn requires 3 − a = 2 − b = 0. So, a = 3, b = 2
and K(s) = (3s + 2)(s + 2)/s2.

Problem 7.4
(a) Omitted
(b) ê(s) = (1− PQ)/s
(c) e(∞) = 0 ⇔ ê(s) = (as + b− 1)/s(as + b) must be stable. So b = 1.
(d) Since e(t) = e−t/a (∀t ≥ 0),

‖e‖22 =
∫ ∞

0
e−2t/a = a/2 ≤ 0.12 ⇒ 0 < a ≤ 0.02.

(e) When a = 0.02, the controller is K(s) = 10(s + 5)/s.

Problem 7.5
(a) The block diagram can be converted into a standard one w.r.t (P,K) in
which K = Q/(1 − P0Q) = Q/(1 − PQ). This is the formula of stabilizing
controllers for P (s). So, the CLS is stable when so is Q(s).
Alternative proof (based on the definition of internal stability):
Add a disturbance at the input port of the plant P (s). Then,
(b) P (jω)Q(jω) → 1 is necessary for ensuring ê(jω) = (1 − PQ)r̂(jω) → 0
over the frequency band in which r̂(jω) has a big amplitude. Since the
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relative degree of P is r > 0, PQ = 1/(ǫs + 1)r ⇒ Q = P−1/(ǫs + 1)r

is implementable. By setting ǫ small enough, the bandwidth 0 < ω < 1/ǫ
widens and the tracking performance is improved.
(c) P and P0 are in parallel connection. So, their common unstable is
uncontrollable and the CLS cannot be stabilized by this IMC structure.

Problem 7.6
Hyw = P

(1+PK)
1
s = P (1 − PQ)1s is stable iff Q(0) = 1/P (0) ⇒ b = 1. So,

Hyw = a/(s+1)(as+1). It is low-pass, then ‖Hyw‖∞ = |Hyw(j0)| = a < 1.
Finally, the condition is obtained as a < 1, b = 1.

Problem 7.7
Based on the controller obtained in Example 7.6, we have

1−PK =
(

1+
1

s+ 2
Q
)−1 (s + 1)2

s(s+ 2)
⇒ ŷ(s) =

P

1− PK
d̂(s) =

(s+ 2)
(

1 + 1
s+2Q

)

s(s+ 1)2

after tedious calculation. In order to guarantee the boundedness of ‖y‖2,
Q(0) = −2 is necessary. We try a choice Q(s) = −(s+ 2)/(ǫs + 1) and get

ŷ(s) =
s+ 2

(s+ 1)2(s+ 1/ǫ)
=

a

s+ 1/ǫ
+

a

(s+ 1)2
+

a

s+ 1

where

a =
ǫ(2ǫ− 1)

(ǫ− 1)2
, b =

ǫ

ǫ− 1
, c =

ǫ(1− 2ǫ)

(ǫ− 1)2
.

So,
y(t) = ae−t/ǫ + bte−t + ce−t.

After the calculation of ‖y‖2 via integration, the parameter ǫ may be calcu-
lated through numerical search.

Problem 7.8
From D−1 = (A,B2,−F, I), D̃−1 = (A,L,−C2, I), we get

ND−1 =





A+B2F −B2F B2

0 A B2

C2 0 0



 , D̃−1Ñ =





A LC2 0
0 A+ LC2 B2

−C2 C2 0



 .

Further, by performing similarity transformations w.r.t. T =

[

I I
0 I

]

, it is

found that A+B2F is uncontrollable and A+ LC2 is unobservable. Then,
the result is attained from eliminating them.
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It is seen from the A matrcies of D−1 and D̃−1 that the zeros of D(s), D̃(s)
coincide with the poles of G22(s). Further, the fact that the zeros of
N(s), Ñ(s) are equal to those of G22(s) follows from

[

A+B2F − sI B2

C2 0

]

=

[

A− sI B2

C2 0

] [

I F
0 I

]

[

A+ LC2 − sI B2

C2 0

]

=

[

I L
0 I

] [

A− sI B2

C2 0

]

.

Problem 7.9
Q(s) = (5s + 2)/(s + 1) is derived from the stability of ê(s) = S(s)r̂(s) =
(1− PQ)/s2. So, K(s) = (s+ 1)(s + 2)(5s + 2)/(s2(s+ 4)).

Problem 7.10
(a) y(∞) = 0 ⇔ ŷ(s) = P/(1+PK)d̂ = P (1−Pq)/s must be stable. Then,
1− P (0)q = 0 ⇒ q = 1/P (0).
(b) q = 2 ⇒ K(s) = 2(s+ 2)/s

Problem 7.11
Omitted.

Problem 7.12
First al all, Fℓ(G, K) = Fℓ(Ĝ, K̂) holds and D̂22 = 0 in Ĝ. Hence, the
coefficient matrices of Fℓ(Ĝ, K̂) are affine in those of K̂.
Once K̂ is obtained, K can be computed via K = (I + K̂D22)

−1K̂.

Problem 7.13
By definition, the CLS is internally stable iff

[ PK
1+PK

P
1+PK

K
1+PK

1
1+PK

]

=

[

PQ P (1− PQ)
Q 1− PQ

]

is stable. This requires the stability of Q, PQ and P (1− PQ). To enure it,
besides the stability of Q, Q(1) = 0, PQ(1) = 1 are also needed. Such Q is
characterized by Q = s−1

s+1Q in which Q(s) is stable and satisfies Q(1) = 2.

Problem 7.14
Due to P (1) = P (∞) = 0 and S = 1−PQ, S(1) = S(∞) = 1 holds no matter
what Q is (these are known as interpolation conditions). According to the
maximal modulus theorem in complex analysis, ‖S‖∞ ≥ S(1) = S(∞) = 1.
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The minimum minK ‖S‖∞ = 1 is attained at Q = 0. The corresponding con-
troller is K = 0. This means that doing nothing is the best choice for this
performance index. Such a wired solution appears because the performance
index ‖S‖∞ is unrealistic, which requires to minimize |S(jω)| uniformly over
the whole frequency domain and is not possible. More practical goal is to
minimize |S(jω)| only in the low frequency band because the frequency com-
ponents of disturbance/reference input concentrate in this band in practice.
Refer to Chapter 10 for more detailed discussions.

Problem 7.15
Based on the block diagram, we have

ŷP = P (û+ d̂), û = QF r̂ +QB(P0û− ŷP ).

Calculating û, we get û = QF r̂ −QBP d̂. So

ŷP = PQF r̂ + P (1− PQB)d̂.

(a) Given the reference model M , it is straightforward to calculate

QF (s) =
M(s)

P (s)
=

25(s + 1)

s2 + 5s+ 25
.

(b) Substitution of d̂ = 1/s and the given QB yields (limit ǫ to less than 1)

ŷP = P (1− PQB)d̂ =
1

s+ 1

(

1− 1

ǫs+ 1

)1

s
⇒ yP (t) =

ǫ

1− ǫ

(

e−t − e−t/ǫ
)

.

Then, the solution is the same as Example 7.5: 0 < ǫ ≤ 0.151.

Problem 7.16
Consider the 2nd spec ‖y‖∞ ≤ 0.1. Since the first spec requires 0 < ǫ ≤
0.151, we need only search in this interval. It is noted that e−t ≥ e−t/ǫ when
ǫ < 1. By solving ẏ(t) = 0 we get a unique solution t∗ = − ln ǫǫ/(1−ǫ). So
the maximal amplitude is obtained as

‖y‖∞ =
ǫ

1− ǫ

(

ǫǫ/(1−ǫ) − ǫ1/(1−ǫ)
)

.

This is an increasing function about ǫ and the solution for ‖y‖∞ ≤ 0.1 can
be computed by numerical search.
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Chapter 8

Problem 8.1
‖x‖2 = 1/2, ‖y‖2 = 1/2, 〈x, y〉2 = 1/10. The computation is straightfor-
ward.

Problem 8.2
It is noted that L1/2[D+C(sI−A)−1B]L−1/2 = L1/2DL−1/2+L1/2C · (sI−
A)−1 ·BL−1/2. Invoking the bounded real lemma, statement 1 holds iff there
exists P > 0 satisfying





ATP + PA PBL−1/2 (L1/2C)T

(PBL−1/2)T −γI (L1/2DL−1/2)T

L1/2C L1/2DL−1/2 −γI



 < 0.

Post-multiplying L1/2 to the 2nd column, L−1/2 to the 3nd column, then pre-
multiplying L1/2 to the 2nd row, L−1/2 to the 3nd row (this is a congruent
transformation) gives the statement 2.
The proof for the converse is done simply by reversing this argument.

Problem 8.3
G∗(jω) +G(jω) > 0 for all frequency ω means that

[

(jωI −A)−1B
I

]∗ [
0 CT

C D +DT

] [

(jωI −A)−1B
I

]

> 0 ∀ ω.

Then, application of the strict inequality version of KYP lemma yields the
strongly positive real lemma. That, there is a matrix P > 0 satisfying

[

ATP + PA PB
BTP 0

]

−
[

0 CT

C D +DT

]

< 0

Problem 8.4
Note G(s − ǫ) = D + C(sI − (A+ ǫI))−1B. For any λ,

rank
[

(A+ ǫI)− λI B
]

= rank
[

A− (λ− ǫ)I B
]

= n

rank

[

(A+ ǫI)− λI
C

]

= rank

[

A− (λ− ǫ)I
C

]

= n

hold owing to the controllability and observability assumption on (A, B, C, ).
So, the realization (A+ ǫI,B,C,D) is also minimal. Further, since A is sta-
ble, A + ǫI must also be stable for sufficiently small ǫ. Then, the positive
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real lemma may be applied on G(s − ǫ) when it is so. And we get
[

(A+ ǫI)TP + P (A+ ǫI) PB
BTP 0

]

−
[

0 CT

C D +DT

]

≤ 0

⇒
[

ATP + PA PB
BTP 0

]

−
[

0 CT

C D +DT

]

≤ −2ǫ

[

P 0
0 0

]

and P > 0. Write ATP+PA as −(jω−A)∗P−P (jω−A). Then, multiplying
[

(jωI −A)−1B
I

]

and its conjugate transpose to this inequality, we obtain

G∗(jω) +G(jω) ≥ 2ǫ((jωT −A)−1B)∗P (jωT −A)−1B

through some calculation. As G(s) has full normal rank, the right side is
positive at finite ω.

Problem 8.5
In the frequency domain,

G(jω) =

[

1 1
ω2+1

− 1
ω2+1

1
ω2+1

]

+ j

[

0 − ω
ω2+1

ω
ω2+1

− ω
ω2+1

]

.

So,

G∗(jω) +G(jω) =

[

2 0
0 2

ω2+1

]

.

It is clear that G(s) is positive real and strictly positive real, but not strongly
positive real because the right hand side looses rank at ω = ∞.
Verification in the state space is done by MATLAB numerically.

Problem 8.6
This is simply an analogy of subsection 8.2.2.1. The same storage function
V (x) = xTPx is used. Multiplying to the left and right of the inequality

derived in Problem 8.4 with a nonzero vector

[

x
u

]

and its transpose, we

have, via the substitution of the dynamics ẋ = Ax+Bu, y = Cx+Du, that

V̇ (x) ≤ 2yTu− 2ǫxTx < 2yTu ∀ x 6= 0. (1.1)

Then

V (x(t)) < V (x(0)) + 2

∫ t

0
yT (τ)u(τ)dτ. (1.2)

So, the energy stored in the system is strictly less than the energy supplied
by the input.
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Chapter 9

Problem 9.1
1. First, there holds

AX1 +RX2 = X1H− (1.3)

−QX1 −ATX2 = X2H−. (1.4)

(i) Suppose x ∈ Ker (X1). By using XT
2 X1 = XT

1 X2 and R ≥ 0, we get
RX2x = 0 from xTXT

2 ×(1.3)×x. Substituting it into (1.3)×x, we have
X1H−x = 0. So Ker(X1) is H−-invariant.

(ii) When Ker (X1) 6= {0}, due to the invariance H−|Ker (X1) has a sta-
ble eigenvalue λ and eigenvector x ∈ Ker (X1) such that H−x = λx.
(1.4)×x → (X2x)

∗(A + λI) = 0. Since (A, R) is stabilizable, this equa-
tion and (X2x)

∗R = 0 leads to X2x = 0, which contradicts the full column

rank of

[

X1

X2

]

.

2. H ∈ dom(Ric) implies that A + RX is stable. So X is a stabilizing
solution. Also, (A, R) must be stabilizable.

Problem 9.2
Assume

(A−BBTX)x = λx, ℜ(λ) ≥ 0, x 6= 0. (1.5)

The given Riccati equation can be arranged as

(A−BBTX)TX +X(A−BBTX) +XBBTX + CTC = 0. (1.6)

x∗×(1.6)×x → BTXx = 0, Cx = 0. Ax = λx is obtained from the sub-
stitution of BTXx = 0 into (1.5). This contradicts the detectiblility of
(C, A).

Problem 9.3
Suppose that there are ℜ(λ) ≥ 0 and x 6= 0 satisfying x∗[A−BR−1DTC −
λI, BR−1BT ] = 0. Multiplying x to this equation, we have x∗BR−1BTx =
0 → x∗B = 0. A further substitution of it into the first equation yields
x∗(A− λI) = 0, which contradicts the stabilizability of (A, B).

Problem 9.4
when D has full column rank, the solvability condition for Cu + Dv = 0
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w.r.t. v is Cu ∈ Ker D, i.e., (I − DR−1DT )Cu = 0. In this case, the
solution v = −R−1DTCu is unique. Hence,

[

A− sI B
C D

] [

u
v

]

= 0 ⇔
[

A−BR−1DTC − sI
(I −DR−1DT )C

]

u = 0.
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Chapter 10

Problem 10.1

A(s) =
s2 − 5s+ 6

s2 + 5s+ 6
, Gm(s) =

s(s2 + 5s+ 6)

(s+ 5)2(s2 + 2s+ 5)
.

Problem 10.2
The relative degrees are the same because

C(sI −A−BF )−1B = C[I − (sI −A)−1BF ]−1(sI −A)−1B

= C(sI −A)−1B · [I − F (sI −A)−1B]−1

and [I −F (sI −A)−1B]−1 has zero relative degree. Conclusion on the zeros
follows from

[

A+BF − sI B
C +DF D

]

=

[

A− sI B
C D

] [

I 0
F I

]

.

Problem 10.3
Case 1: The zero z is unstable, but the poles p1, p2 are stable.
In this case, the infimum is

inf ‖e‖22 =
2

|z|

which only depends on the zero and increases as the zero gets close to the
origin.
Case 2: z, p1 are unstable, p2 is stable.
In this case, the poles are real and the infimum is

inf ‖e‖22 =
2

|z| + 8
p1

(z − p1)2
.

It gets larger as z → 0 or p1 → z.
Case 3: z, p1 6= p2 are all unstable and real.
The infimum is

inf ‖e‖22 =
2

|z| + 8
p1

(z − p1)2

∣

∣

∣

∣

p1 + p2
p2 − p1

∣

∣

∣

∣

2

+ 8
p2

(z − p2)2

∣

∣

∣

∣

p1 + p2
p2 − p1

∣

∣

∣

∣

2

− 32
p1p2

(p1 + p2)(z − p1)(z − p2)

∣

∣

∣

∣

p1 + p2
p2 − p1

∣

∣

∣

∣

2

.
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It increases when z → 0, or p1 → z, or p2 → z, or p1 → p2, or p1 + p2 → 0.
Case 4: z is unstable and p1 = p̄2 are unstable.
The infimum is

inf ‖e‖22 =
2

|z| + 8
ℜ(p1)

|z − p1|2
∣

∣

∣

∣

ℜ(p2)
ℑ(p2)

∣

∣

∣

∣

2

+ 8
ℜ(p2)

(z − p2)2

∣

∣

∣

∣

ℜ(p1)
ℑ(p1)

∣

∣

∣

∣

2

− 16ℜ ℜ(p1)2p̄1
p21(z − p1)(z − p2)

.

It increases when z → 0, or p1 = p̄2 → z, or p1 = p̄2 → 0, or ℑ(p1) =
−ℑ(p2) → 0 ⇔ p1 → p2.

Problem 10.4
A realization of the unstable plant is P (s) = (1, 1, 1, 0). So G22 = −P =
(1, 1,−1, 0). Choosing f = −2, l = 2, we have Af = Al = −1. As a result,

[

D −Y
N −X

]

=

[ s−1
s+1

4
s+1

− 1
s+1

s+3
s+1

]

.

Further, the plant has no unstable zero, so a suboptimal free parameter is
Q(s, ǫ) = N−1X/(1 + ǫs) = (s+ 3)/(1 + ǫs). Then,

K(s) = (Y −NQ)(X −DQ)−1 =
4(1 + ǫs)

ǫs(s+ 3)
+

s− 1

ǫs
.
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Chapter 11

Problem 11.1
The uncertain system is described by

P (s) = P0(s)[1 +W (s)δ(s)], |δ(jω)| ≤ 1 ∀ ω.

So ∆(s) = P0(s)W (s)δ(s) and the upper bound of uncertainty gain is char-
acterized by

|W (jω)| ≥
∣

∣

∣

∆(jω)

P0(jω)

∣

∣

∣
,

∆(s)

P0(s)
=

As2

s2 + sζ1ω1s+ ω2
.

Computing the frequency response of ∆(s)/P0(s) w.r.t the vertices of un-
certain parameters, then plot them in the same Bode plot, we can find an
upper bound by curve fitting with a high-pass transfer function.

Problem 11.2
It is not difficult to get

∆(jω) =P (jω) − P0(jω) =
k − k0 + jω(kτ0 − τk0)

(1 + jτω)(1 + jτ0ω)

⇒|∆(jω)|2 =
(k − k0)

2 + ω2(kτ0 − τk0)
2

(1 + τ2ω2)(1 + τ20ω
2)

.

At low frequencies, |∆(jω)| ≈ |k − k0|. So k0 = (kmin + kmax)/2, the mean
value, is a good choice. At high frequencies |∆(jω)| ≈ |kτ0 − τk0|/τ0τω.
Then, the maximum τmax is better for τ0. Further, when τ0 = τmax the
corner frequency of the numerator k − k0 + (kτ0 − τk0)s is bigger that that
of 1+ τ0s in the denominator so that |∆(jω)| becomes a decreasing function
of ω.
In summary, a good pair of nominal parameters is k0 = 1.0, τ0 = 1.3, rather
than the usually adopted pair of mean values.

Problem 11.3

A = λ1A1 + λ2A2 + λ3A3 + λ4A4, B = λ1B1 + λ2B2 + λ3B3 + λ4B4

A1 = A2 =

[

0 1
0 1

T1

]

, A3 = A4 =

[

0 1
0 1

T2

]

B1 =

[

0
K1

T1

]

, B2 =

[

0
K2

T1

]

, B3 =

[

0
K1

T2

]

, B4 =

[

0
K2

T2

]

.
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Problem 11.4

A = λ1A1 + λ2A2 + λ3A3 + λ4A4, B = λ1B1 + λ2B2 + λ3B3 + λ4B4

A1 =





0 k1
J1

0

−1 0 1

0 − k1
JM

0



 , A2 =





0 k2
J1

0

−1 0 1

0 − k2
JM

0





A3 =





0 k1
J2

0

−1 0 1

0 − k1
JM

0



 , A4 =





0 k2
J2

0

−1 0 1

0 − k2
JM

0





B1 = B2 =





1
J1
0
0



 , B3 = B4 =





1
J2
0
0



 .

Problem 11.5
(1) Rectangle case: there are 4 vertices

[

1
1

]

,

[

1
4

]

,

[

2
1

]

,

[

2
4

]

.

(1) Triangle case: there are 3 vertices. Two are fixed as

[

1
1

]

,

[

2,
4

]

and the 3rd one is free. The vertex that minimizes the area of the triangle
is given by the intersection point of two tangent lines of function y = m2

passing through, respectively, the points (m, m2) = (1, 1), (2, 4). The

solution is

[

3/2
9/4

]

.

The trapezoid with the minimal area is bounded by 4 straight lines: one
connecting the two ends of the curve y = m2 (whose gradient is 3), two
aforementioned tangent lines, and one with a gradient 3 and intersects the
curve y = m2 at only one point. The intersection point is computed by
solving dm2

dm |m0
= 3 → m0 = 3/2. And the line is given by y − m2

0 =
3(m −m0). Solving for the intersection points this line with the other two
tangent lines, we finally obtain

[

1
1

]

,

[

5/4
25/16

]

,

[

7/4
49/16

]

,

[

2
4

]

.
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Problem 11.6
The difference from Example 11.6 is: Jm 6= 1 and parameter uncertainties
are in a multiplicative form. The detail is omitted.

Problem 11.7
Refer to Subsection 20.5.1.
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Chapter 12

Problem 12.1
W (s) = c/(Ms + µ0)

Problem 12.2
Omitted

Problem 12.3
The system cannot be robustly stabilized because ‖WS‖∞ ≥ |WS(j∞)| =
2 > 1. This is due to the large uncertainty assumed in the high frequency
domain.

Problem 12.4
(a) a > −4
(b)W = a−10, −4 < a < 24. This range is narrower than the true allowable
range and is caused by enlarging the parameter interval into an unrealistic
complex disk.

Problem 12.5
(a) k > 1
(b) ê(s) is stable owing to the integrator in the controller. So e(∞) = 0. (c)
k ≥ 2 is obtained based on the stability criterion. Also, the plant can be
written as P̃ = P/(1 + αP ). If we treat the uncertainty as norm-bounded
and apply the robust stability condition ‖PS‖∞ = 1/(k−1) ≤ 1, we get the
same k ≥ 2.

Problem 12.6
The control objective can be formulated as reducing the norm of the transfer
matrix from (r, d) to the tracking error e in face of parameter uncertainty.
This is equivalent to the robust stabilization of the system in Figure 12.6
where the virtual uncertainties have bounded norms, say, 1. Then, based
on the small-gain theorem, a sufficient condition is given by the nominal
stability and a norm constraint ‖Hzw‖∞ < 1 in which z = (z1, z2), w =
(w1, w2) and the closed loop transfer matrix as well as the corresponding
generalized plant G are

Hzw(s) =
1

1 + P̃K

[

Wr −WrP̃

Wd −WdP̃

]

, G(s) =





Wr −WrP̃ −WrP̃

Wd −WdP̃ −WdP̃

1 −P̃ −P̃



 .
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This condition still contains uncertain parameters. However, it can be re-
duced to conditions at the four vertices of the parameter vector (M, µ). For
the detail of the technique, refer to Chapter 18.

∆r

Wr Wd ∆d

K P̃
y

−

e

w1z1

z2 w2

u

Figure 12.6

Problem 12.7
1. First of all, we note that the nominal stability is ensured by the IMC
structure.
P is written as P0(1 +W∆) with ‖∆‖∞ ≤ 1. Then, the CLS can be trans-
formed equivalently into one with two blocks WP0Q and ∆. So the robust
stability is guaranteed by the norm condition ‖WP0Q‖∞ < 1.
2. The robust performance is equivalent to the robust stability of the CLS
in Figure 12.7. From this block diagram, we see that

z1 =WR(1− P0Q)(w1 − w2)

z2 =WP0Q(w1 − w2).

A sufficient condition is obtained as

‖Hzw‖∞ < ǫ, Hzw =

[

WR(1− P0Q)
WP0Q

]

[

1 −1
]

.

P0

∆WWR

∆r Q
y−

e

w1z1

z2
w2

P0

−

−

Figure 12.7
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Problem 12.8
We try Q = P−1/(1 + ǫs) = (s + 1)/(1 + ǫs) (ǫ > 0). Then,

WP0Q =
0.2s

(0.1s + 1)(ǫs + 1)
⇒

|WP0Q(jω)|2 =
(0.2ω)2

(1 + (0.1ω)2)(1 + (ǫω)2)

=
(0.2)2

(0.1ǫω − 1/ω)2 + ǫ2 + 0.2ǫ+ 0.01
.

So for Spec 1, there must be

‖WP0Q‖∞ =
0.04

ǫ2 + 0.2ǫ+ 0.01
< 1 ⇒ ǫ2 + 0.2ǫ + 0.01 > 0.04

⇒ ǫ > 0.1.

The controller has an integrator automatically for the chosen Q. Hence,
Spec 2 is also satisfied.

Now, we look at Spec 3.

ê(s) = WR(1− P0Q) =
1

s
(1− 1

1 + ǫs
) =

1

s+ 1/ǫ

⇒ e(t) = e−t/ǫ ⇒ ‖e‖2 =
√

ǫ/2 < 0.5 ⇒ ǫ < 0.5.

Therefore, the range of allowable parameter is 0.1 < ǫ < 0.5.

Problem 12.9
1. Name the inputs of ∆n, ∆m as z1, z2 respectively. The CLS may be
transformed into one with the dilated uncertainty [∆n −∆m] and Hzw, the
transfer matrix from w to z = (z1, z2) is:

Hzw(s) =

[ − 1
m0

K
1+PK

1
m0

1
1+PK

]

W.

So the robust stability condition is ‖Hzw‖∞ < 1.

2.

Hzw(s) =

[

−Q
1− P0Q

]

W

m0
.

3. The controller K(s) needs an integrator. So, Q(0) = /P0(0).
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4. Set Q(s) = P−1/(1 + ǫs). Then

Hzw(s) =
0.2

1 + ǫs

[

−(s+ 1)
ǫs

]

⇒

‖Hzw(jω)‖2 = 0.4(1 +
ω2

1 + (ǫω)2
) ≤ 0.4(1 +

1

ǫ2
) < 1

⇒ ǫ > 1/
√
1.25.

Problem 12.10
For any uncertainty ∆, the sensitivity performance is equivalent to

∣

∣

∣

∣

W1
1

1 +KP0(1 +W2∆)

∣

∣

∣

∣

< 1 ∀ ω ⇔

|W1| < |1 + P0K +W2P0K∆| ∀ ω ⇔ |W1S0| < |1 +W2T0∆| ∀ ω.

The right hand side takes its minimum 1− |W2T0| at the worst-case uncer-
tainty:

∆ : |∆(jω)| = 1, arg∆(jω) = − arg[W2(jω)T0(jω)].

Therefore

|W1S0| < 1− |W2T0| ⇒ |W1S0|+ |W2T0| < 1 ∀ ω

is necessary and sufficient.

Problem 12.11
1. The CLS is equivalent to one consisting of ∆ and WQB. So the robust
stability condition is ‖WQB‖ < 1.
2. The robust disturbance control problem is equivalent to the robust sta-
bility problem of the system in Figure 12.11(a) in which ‖∆D‖∞ ≤ 1. Then,
from this figure we have

z1 = WD[w2 + P0(w1 + u)], z2 = W (w1 + u), u = −QB(w2 + P0w1)

⇒z1 = WDP0(1− P0QB)w1 +WD(1− P0QB)w2,

z2 = W (1− P0QB)w1 −WQBw2.

Hence, the transfer matrix from (w1, w2) to (z1, z2) is

HD(s) =

[

WDP0(1− P0QB) WD(1− P0QB)
W (1− P0QB) −WQB

]

and a robust disturbance control criterion is given by ‖HD‖∞ < 1.
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P0

∆W

y

z2
w2

P0

−

∆d

WD

w1

QB

QB

z1

r = 0

Figure 12.11(a)

3. Similarly, the robust reference tracking problem is equivalent to the
robust stability problem of the system in Figure 12.11(b) and ‖∆R‖∞ ≤ 1.
Further, the transfer matrix from (w1, w2) to (z1, z2) is

HR(s) =

[

WR(1− P0QB) −WR(1− P0QB)
WQF −WQB

]

and a robust reference tracking criterion is given by ‖HR‖∞ < 1.

P0

∆W
WR

∆r y

e

w1z1

z2
w2

P0

−

d = 0

QB

QB

Figure 12.11(b)
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Chapter 13

Problem 13.1
The CLS dynamics is ẋ = − 1

τ (1 + kf)x. By definition, it is quadratically
stable if there is a p > 0 such that

−2
1

τ
(1 + kf)p < 0 ⇔ 1

τ
(1 + kf) > 0 ∀(τ, k)

holds. Since both parameters are positive, this inequality reduces to vertex
conditions:

1 + k1f > 0, 1 + k2f > 0 ⇔ f > − 1

k2
= − 1

1.2
.

Problem 13.2
Sufficiency: when ‖D‖2 < 1, then ‖I −D∆‖2 ≥ 1−‖D‖2 ‖∆‖2 > 1−1×1 =
0. So I −D∆ is invertible.

Necessity: We make use of the SVD of matrix D:

D = U∗







λ1

. . .

λn






V, UU∗ = I, V V ∗ = I.

λ1 ≥ 1 if ‖D‖2 ≥ 1. We prove that the following ∆ lowers the rank of
I −D∆. This is clear from

∆ = V ∗







1
λ1

. . .

0






U ⇒ ‖∆‖2 =

1

λ1
≤ 1

⇒ I − U∗







λ1

. . .

λn






V V ∗







1
λ1

. . .

0






U = U∗







0
. . .

1






U.

Problem 13.3
The input-output relations are as follows:

M(s) : ẋ = Ax+Bw, z = Cx+Dw

∆ : w = ∆z.
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According to the bounded real lemma, ‖M‖∞ < implies the existence of a
P > 0 satisfying





PA+ATP PB CT

BTP −I DT

C D −I



 < 0.

Then, multiplication of vector (x, w, z) and its transpose to this inequality
leads to

0 >xT (PA+ATP )x+ 2xTPBw + 2xTCT z −wTw + 2wTDT zT − zT z

=xTP (Ax+Bw) + (Ax+Bw)TPx+ 2(Cx+Dw)T z − wTw − zT z

=xTPẋ+ ẋTPx+ zT z − wTw = V̇ + zT z − wTw.

Since wTw = zT∆T∆z ≤ zT z, we have V̇ < wTw − zT z ≤ 0 which implies
the asymptotic stability of the state x(t).

Problem 13.4
The same problem as Problem 4.12. To be deleted.

Problem 13.5
First of all, the phase angle of ∆(jω) is within [−π/2, π/2] and that of
M(jω) is in (−π/2, π/2) under the given positive real and strongly positive
real properties. So, their sum will never be ±180◦. The CLS is unstable
only if the Nyquist plot M(jω)∆(jω) encircles or crosses the critical point
(−1, j0) for some uncertainty ∆. In the former case, the gain of uncertainty
can be reduced so that the Nyqiost plot crosses the critical point. That is, the
CLS is not robustly stable iff there is a certain uncertainty and a frequency
ω at which

1 +M(jω)∆(jω) = 0.

This is, however, impossible owing to the phase angle property just stated.

Problem 13.6
Step 1: The transformation is done by setting z = Cx+Dw and w = ∆z.

Step 2: ‖M‖∞ < 1 implies that there is a P > 0 satisfying





P (A+BF ) + (A+BF )TP PE (C +DF )T

ETP −I 0
C +DF 0 −I



 < 0.
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Step 3: The variable change solution





QAT +AQ+MTBT +BM E (CQ+DM)T

ET −I 0
CQ+DM 0 −I



 < 0, Q > 0.

is derived by setting Q = P−1 and M = FQ.
Meanwhile, in the variable elimination method we write the condition as





PA+ATP PE CT

ETP −I 0
C 0 −I



+





PB
0
D



F





I
0
0





T

+





I
0
0



F T





PB
0
D





T

< 0

and compute the following two matrices





I
0
0





T

⊥

=





0 0
I 0
0 I



 ,





PB
0
D





T

⊥

=





P−1

0 I
I 0









[

B
D

]T

⊥
0

0 I



 .

Respective multiplication of them onto the preceding inequality provides a
solvability condition (another one is included in this condition):





[

B
D

]T

⊥
0

0 I





T 



AX +XAT E XCT

ET −I 0
CX 0 −I









[

B
D

]T

⊥
0

0 I



 < 0.

Another condition
[

X I
I Y

]

> 0

follows from P > 0.

Problem 13.7
Define z = C1x+D12u and w = ∆z. The parametric system turns into an
upper LFT of the uncertainty ∆ and the following generalized plant G:

ẋ = Ax+B2w +B1u

z = C1x+D12u

y = C2x.

The CLS is quadratically stable if the H∞ norm condition

‖Hzw‖∞ < 1
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is satisfied in which Hzw is the nominal CLS transfer matrix from w to z.
The solution to this H∞ problem is provided in Chapter 16.

Problem 13.8
State feedback case:
The CLS is ẋ = (A+BF )x, which is quadratically stable if there is a P > 0
satisfying

(A+BF )P + P (A+BF )T < 0

for all uncertain parameters. Defining M = FP , this inequality can be
reduced to its vertex conditions:

AiP + PAi +BiM +MTBT
1 < 0, i = 1, 2

Output case:
Let the controller be ẋK = AKxK +BKy, u = CKxK +DKy. The CLS is

[

ẋ
ẋK

]

=

[

A+BDKC BCK

BKC AK

]

and is quadratically stable if there is a P > 0 such that AT
c P +PAc < 0 for

all λ1. This can be reduced to the vertex conditions:

[

Ai +BiDKC BiCK

BKC AK

]T

P + P

[

Ai +BiDKC BiCK

BKC AK

]

, i = 1, 2.

Unfortunately, solution for this problem is still not known.



46

Chapter 15

Problem 15.1
‖G‖2 =

√

7/44 (refer to the solution to Problem 2.28 for the detail), ‖y‖2 =
2 ‖G‖2 =

√

7/11, E[y(∞)y(∞)T ] = (3 ‖G‖2)2 = 63/44.

Problem 15.2
r(t) is the impulse response of integrator W (s) = 1/s. So ‖e‖2 = ‖WS‖2.
Here, the sensitivity is S = s/(s+k). For stability, k > 0 is necessary. Then,
k ≥ 50 is computed from ‖WS‖2 =

√

1/2k ≤ 0.1.

Problem 15.3
The result is easy to show by starting with ‖G‖22 =

∫∞
0 Tr(gT g)dt. That is,

substitution of the impulse response e(t) = CeAtB yields

‖G‖22 = Tr(BT

∫ ∞

0
eA

T tCTCeAtdtB).

Then, the conclusion follows from Lo =
∫∞
0 eA

T tCTCeAtdt.

Problem 15.4???
A realization of the unstable plant is P (s) = (1, 1, 1, 0). So G22 = −P =
(1, 1,−1, 0). Choosing f = −2, l = 2, we have Af = Al = −1. As a result,

[

D −Y
N −X

]

=

[ s−1
s+1

4
s+1

− 1
s+1

s+3
s+1

]

.

Further, the plant has no unstable zero, so a suboptimal free parameter is
Q(s, ǫ) = N−1X/(1 + ǫs) = (s + 3)/(1 + ǫs). Then,

K(s) = (Y −NQ)(X −DQ)−1 =
4(1 + ǫs)

ǫs(s+ 3)
+

s− 1

ǫs
.

Problem 15.4
Done by analogy of part 1. Omitted.

Problem 15.5
Done by analogy of part 1. Omitted.
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Problem 15.6
This is done by applying a change of input u and output y. It is easy to see

D12 := D12(D
T
12D12)

−1/2 ⇒ D
T
12D12 = (DT

12D12)
−1/2 ·DT

12D12 · (DT
12D12)

−1/2 = I

D21 := (D21D
T
21)

−1/2D21 ⇒ D21D
T
21 = I.

Then, we define new input and output as ū, ȳ below:

ū := (DT
12D12)

1/2u, ȳ := (D21D
T
21)

−1/2y

and absorb the scaling matrices into the generalized plant and the controller.
The transformed system becomes

ẋ =Ax+B1w +B2(D
T
12D12)

−1/2ū

z =C1x+D11w +D12ū

ȳ =(D21D
T
21)

−1/2C2x+D21w

ū =Kū

K =(DT
12D12)

1/2K(D21D
T
21)

1/2.

After the design of K(s), the real controller K(s) is computed by

K(s) = (DT
12D12)

−1/2K(D21D
T
21)

−1/2.

Problem 15.7
Under the given condition, D†

12 = DT
12 and D†

21 = DT
21 hold. According

to Lemma 2.3, the solvability condition is D12D
T
12D11D

T
21D21 = D11 and

a solution is DK = −DT
12D11D

T
21. Further, D̂11 = Dc = 0 and K(s) =

K̂(s) +DK .

Problem 15.8
Since C2 = I and D21 = 0, there hold Gf = V = (A + L, B1, I, 0). So,
Hzw = GcB1 + U(Q − F2)V . The rest is similar to the output case and
omitted.

Problem 15.9
The CLS is

[

ẋ
z

]

=

[

A+B2F B1

C1 +D12F D11

] [

x
w

]

.
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Applying the state space conditions of H2 norm given in Section 15.5, we
obtain

[

P (A+B2F ) + (A+B2F )TP (C1 +D12F )T

C1 +D12F −I

]

< 0

[

W BT
1 P

PB1 P

]

> 0, Tr(W ) < γ2.

After transforming them into inequalities about Q = P−1, we obtain

[

AQ+QAT +B2M +MTBT
2 QCT

1 +MTDT
12

C1Q+D12M −I

]

< 0

[

W BT
1

B1 Q

]

> 0, Tr(W ) < γ2.

by changing the unknown F to a new variable M = FQ.
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Chapter 16

Problem 16.1
(a) Omitted,

(b) ‖P‖∞ = |P (j∞)| = 1

(c) 1/2

Problem 16.2

Wr

W

K P̃
yP

−
e

rw1

w2

u

Wd

z

d

Figure 16.2

First, the robust reference tracking and disturbance suppression performance
can be formulated as a minimization problem of the transfer matrix from
(r, d) to the tracking error e. After inserting the models of the speed refer-
ence and wind disturbance, we shift their common part (unstable in partic-
ular) such as integrator to the error port (Figure 16.2). Then, the problem
boils down to a norm constraint ‖Hzw‖∞ < 1 in which w = (w1, w2). Let
the state equation of each block be described as

ẋ =− µ

M
x+

1

M
(u+ d), yP = x

ẋW =AWxW +BW e, z = CWxW +DW e

ẋr =Arxr +Brw1, r = Crxr +Drw1

ẋd =Adxd +Bdw2, d = Cdxd +Ddw2.

The measured output y is the tracking error e = r−yP = −x+Crxr+Drw1.
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Then, the state equation of the generalized plant becomes









ẋ
ẋW
ẋr
ẋd









=









− µ
M 0 0 1

MCd

−BW AW BWCr 0
0 0 Ar 0
0 0 0 Ad

















x
xW
xr
xd









+









0 1
MDd

BWDr 0
Br 0
0 Bd









[

w1

w2

]

+









1
M
0
0
0









u

z =[−DW CW DWCr 0]









x
xW
xr
xd









+ [DWDr 0]

[

w1

w2

]

y =[−1 0 Cr 0]









x
xW
xr
xd









+ [Dr 0]

[

w1

w2

]

.

The following three matrices depend on the uncertain parameter vector θ =
(M, µ):

A(θ) =









− µ
M 0 0 1

MCd

−BW AW BWCr 0
0 0 Ar 0
0 0 0 Ad









B1(θ) =









0 1
MDd

BWDr 0
Br 0
0 Bd









, B2(θ) =









1
M
0
0
0









.

As a result, in the coefficient matrices of the closed loop system, Ac(θ) and
Bc(θ) become affine functions of the parameter vector θ (refer to Eqs. (7.43),
(7.44)). Further, by the bounded-real lemma the norm condition is satisfied
iff there is a matrix P > such that





Ac(θ)
TP + PAc(θ) PBc(θ) CT

c

Bc(θ)
TP −I DT

c

Cc Dc −I



 < 0.
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This condition can be reduced equivalently to the vertix conditions:




Ac(θi)
TP + PAc(θi) PBc(θi) CT

c

Bc(θi)
TP −I DT

c

Cc Dc −I



 < 0, i = 1, . . . , 4

in which

θ1 =

[

M1

µ1

]

, θ2 =

[

M2

µ1

]

, θ1 =

[

M1

µ2

]

, θ1 =

[

M2

µ2

]

.

Additional problem:
Consider the quadratic stabilization. The input may be set as a state feed-
back u = fx. Then, for all uncertain parameters under consideration, the
quadratic stability condition

(− µ

M
+ f

1

M
)P + P (− µ

M
+ f

1

M
) < 0, P > 0

falls down to the following vertex conditions:

(− µi

Mj
+ f

1

Mj
)P < 0, P > 0 i, j = 1, 2.

This further reduces to
f < µ1.

Problem 16.3
The stability of Hyw requires → PQ(0) = 1 → b = 1. Then, ‖Hyw‖∞ =
|Hyw(0)| = a → 0 < a < 1. K(s) = (s + 1)/(as). Smaller a contributes
more to the disturbance suppression, but results in bigger control input.

Problem 16.4
The CLS is

[

ẋ
z

]

=

[

A+B2F B1

C1 +D12F D11

] [

x
w

]

.

Applying the bounded real lemma to this CLS, the problem has a solution
iff there is a P > 0 satisfying





ATP + PA PB1 CT
1

BT
1 P −γI DT

11

C1 D11 −γI



+





PB2

0
D12



F





I
0
0





T

+





I
0
0



F T





PB2

0
D12





T

< 0.
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Setting X = P−1 and noting

[BT
2 P 0 DT

12]⊥ =





X 0 0
0 0 I
0 I 0





[

NX 0
0 I

]

, [I 0 0]⊥ =





0 0
I 0
0 I



 ,

we arrive at the solvability condition

[

NT
X 0
0 I

]





AX +XAT XCT
1 B1

C1X −γI D11

BT
1 DT

11 −γI





[

NX 0
0 I

]

< 0.

Another condition

[

−γI DT
11

D11 −γI

]

< 0 in bounded real lemma is contained

in this LMI.

Problem 16.5
The multiplication yields





ΠT
1 A

T
c PΠ1 +ΠT

1 PAcΠ1 ΠT
1 PBc ΠT

1 C
T
c

BT
c PΠ1 −γI DT

c

CcΠ1 Dc −γI



 < 0.

The LMI solution follows from a substitution of

ΠT
1 PAcΠ1 =

[

AX +B2C A+B2DC2

A Y A+ BC2

]

, ΠT
1 PBc =

[

B1 +B2DD21

Y B1 + BD21

]

CcΠ1 =
[

C1X +D12C C1 +D12DC2

]

.

Problem 16.6
The only difference lies in the changes of −γI → −γL, −γI → −γL−1 in
the lower right corner. So the derivation is the same as Subsection 16.3.1,
and the matrix inverse L−1 is set as J .

Problem 16.7
After the treatment as in Problem 16.5, the solvability condition for the
scaled H∞ control problem becomes P > 0 and





ΠT
1 A

T
c PΠ1 +ΠT

1 PAcΠ1 ΠT
1 PBc ΠT

1 C
T
c

BT
c PΠ1 −γL DT

c

CcΠ1 Dc −γJ



 < 0.
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Then, substitution of the matrix blocks calculated there leads to

He









AX +B2C A+B2DC2 B1 +B2DD21 0
A Y A+ BC2 Y B1 + BD21 0
0 0 −γ

2L 0
C1X +D12C C1 +D12DC2 D11 +D12DD21 −γ

2J









< 0 (1.7)

[

X I
I Y

]

> 0 (1.8)

LJ = I. (1.9)

Here, the same variable changes are used.
The same K-L iteration procedure in Section 16.7 may be applied.
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Chapter 17

Problem 17.1
Necessity: det[I − M(jω)∆(jω)] = 0 at some ω implies that the CLS is
unstable w.r.t. this ∆(s).
Sufficiency: First, we fix the dynamics of uncertainty ∆(s), only let its
gain vary from zero to the allowable bound. When the gain is zero, we
have det(I − M∆) = 1. When the gain is raised the trajectory of det[I −
M(jω)∆(jω)] expands continuously outward. So, it must intersect the origin
before encircling the origin. Therefore, the CLS is stable whenever det[I −
M(jω)∆(jω)] 6= 0 for all frequencies. As the dynamics of ∆(s) in the proof
is arbitrary, the conclusion is true for any ∆(s) in the given class.

Problem 17.2
(a) µ∆(M(jω0)) ≥ 1/γ implies that there is some γ0 < γ such that µ∆(M(jω0))
= 1/γ0 because µ∆(M(jω0)) is bounded. That is, there is a complex matrix
∆0(jω0) satisfying

σmax[∆0(jω0)] =
1

γ0
, det[I −M(jω0)∆0(jω0)] = 0

by the definition of µ. Then, there is a vector u such that [I−M(jω0)∆0(jω0)]
u = 0.
(b) is trivial.
(c) and (d) can be done by using the algorithm given in the proof of small-
gain theorem.
(e) The ∆(s) constructed in (c) and (d) belongs to the given class and satis-
fies det[I −M(jω0)∆(jω0)] = 0 so that jω0 is a pole of the CLS. Therefore,
for the robust stability µ∆(M(jω)) ≤ 1/γ must hold in the whole frequency
domain for all uncertainty in the given class.
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Chapter 18

Problem 18.1
To ensure that the CLS coefficient matrices are affine in the uncertain pa-
rameter vector, we may add two low-pass filters to the input and output
ports of the controller:

K(s) = F1(s)K(s)F2(s).

Let the input and output of the new controller K(s) be denoted by (y, u),
then

y = F2(s)y, u = F1(s)u.

Next, we absorb these filters into the generalized plant G(s) in the controller
design:

G(s) =

[

I 0
0 F2

]

G

[

I 0
0 F1

]

.

Specifically, when the filters are selected as 1st order with break frequencies
(ω1, ω2)

Fi(s) =
ωi

s+ ωi
I,

we have

G(s) =













−ω2I C2 0 D21 0
0 A B2 B1 0
0 0 −ω1I 0 ω1I

0 C1 D12 D11 0
ω2I 0 0 0 0













The computation is based on the cascade connection formula of Subsection
4.1.9. Then, the approach of Section 18.3 can be applied.

G

K F1F2

wz

uy
ȳ ū

Problem 18.2
(a) Refer to the solution to Problem 13.3.
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(b) We note that, by Schur’s lemma, (18.35) implies

0 >ATP + PA−
[

PB CT
]

(−I)−1

[

BTP
C

]

=ATP + PA+ PBBTP + CTC.

Next, via a completion of square, we get (∵ ∆T∆ ≤ I)

ATP + PA+ CT∆TBTP + PB∆C

= ATP + PA+ PBBTP + CT∆T∆C − (PB − CT∆T )(BTP −∆C)

≤ ATP + PA+ PBBTP + CT∆T∆C

≤ ATP + PA+ PBBTP + CTC.

So, the quadratic stability is guaranteed by (18.35).
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Chapter 19

Problem 19.1
The pole location −h2 < ℜ(z) = (z + z̄)/2 < −h1 requires a matrix X > 0
satisfying

XA+ T TX + h1X < 0, XA+ T TX + h2X > 0

simultaneously by following the variable replacement rule of (19.17).

Problem 19.2
Shifting the imaginary axis of the s-plane to s = a and let the resultant
coordinate be p-plane. Then, any point z is the s-plane becomes p = z − a
in the p-plane. After this transformation, the given sector turns into a sector
whose vertex is the origin p = 0 in the new plane and the known result may
be applied. So,

fD(z) = p

[

sin θ cos θ
− cos θ sin θ

]

+ p

[

sin θ − cos θ
cos θ sin θ

]

< 0

= z

[

sin θ cos θ
− cos θ sin θ

]

+ z

[

sin θ − cos θ
cos θ sin θ

]

− 2a

[

sin θ 0
0 sin θ

]

< 0.

Problem 19.3

Noting that I −∆T∆ ≥ 0, the inequality follows from

YT [(Q⊗ I)− (Q⊗∆T∆)]Y = YT [Q⊗ (I −∆T∆)]Y

=
k

∑

i=1

k
∑

j=1

qijYT
i (I −∆T∆)Yj

=
k

∑

i=1

k
∑

j=1

qij [(I −∆T∆)1/2Yi]
T (I −∆T∆)1/2Yj

= {[I ⊗ (I −∆T∆)1/2]Y}T (Q⊗ I){[I ⊗ (I −∆T∆)1/2]Y}
≥ 0.

Problem 19.4
We note that V̇ (x) = ẋTPx+ xTPẋ = xT (AT (t)P + PA(t))x. Multiplying
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x and xT to the (i, j) block of ND(A(t), P ), we see that

xTND(A(t), P )ijx = xT [lijP +mijPA(t) +mjiA
T (t)P ]x

= lijx
TPx+mijx

TPA(t)x+mji(A(t)x)
TPx

= lijV (x) +
1

2
mijx

T [PA(t) +AT (t)P ]x+
1

2
mjix

T [PA(t) +AT (t)P ]x

= lijV (x) +
1

2
mijV̇ (x) +

1

2
mjiV̇ (x)

= V (x)[lij +
1

2
mij

V̇ (x)

V (x)
+

1

2
mji

V̇ (x)

V (x)
].

(The 3rd equation is due to xTPA(t)x = xTPA(t)Tx as it is a scalar.) So,
by multiplying all blocks of the given matrix inequality with x and xT , we
get

0 > (I ⊗ xT )ND(A(t), P )(I ⊗ x)

= V (x)(L+
1

2

V̇ (x)

V (x)
M +

1

2

V̇ (x)

V (x)
MT )

= V (x) · fD(
1

2

V̇ (x)

V (x)
).

Dividing this inequality with V (x) > 0, we see that the characteristic func-

tion satisfies fD(
1
2
V̇ (x)
V (x)) < 0, i.e., 1

2
V̇ (x)
V (x) ∈ D. Since 1

2
V̇ (x)
V (x) takes real values,

it must be bounded by the two intersection points of the region D and the
real axis. Denote these two points by (−a, j0) and (−b, j0). Then

−b ≤ 1

2

V̇ (x)

V (x)
≤ −a ⇔ −2bV (x) ≤ V̇ (x) ≤ −2aV (x).

As the solution of ẏ = −2py is y(t) = e−2pty(0), according to the well-known
comparison principle[?]

e−2btV (0) ≤ V (x) ≤ e−2atV (0)

holds. Further, noting that λmin(P ) ‖x‖22 ≤ xTPx ≤ λmax(P ) ‖x‖22, we
arrive at

λmin(P ) ‖x(t)‖22 ≤ e−2atV (0), λmax(P ) ‖x(t)‖22 ≥ e−2btV (0)

⇒ c1e
−bt ≤ ‖x(t)‖ ≤ c2e

−at.
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This means that the state response is bounded by two exponentially conver-
gent functions with convergence rates a and b.

Problem 19.5
1. The matrices in the characteristic function are

L =

[

−r c
c −r

]

, M =

[

0 1
0 0

]

= M1M
T
2 ⇒ M1 =

[

1
0

]

, M2 =

[

0
1

]

.

2.
L = 2σ, M = 1 ⇒ M1 = M2 = 1.

3.

L = 0, M =

[

sin θ cos θ
− cos θ sin θ

]

⇒ M1 = M, M2 = I2.

Expansion of (19.59) is done by the substitution of these matrices and the
matrices given after (19.60). The computation is straightforward and omit-
ted here.
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Chapter 20

Problem 20.1
The following factorization as well as the solution for P > 0 is due to Lemma
3.1

MMT = Y −X−1, P =

[

Y M
MT I

]

.

Meanwhile, the result about the scaling matrix L is from a variation of
Lemma 3.1, derived from the (2, 2) block of L > 0:

NTN = L3 − J−1
3 , L =

[

I N
NT L3

]

.

Step 3 is almost the same as Subsection 16.3.1, the difference lies in the
existence of La and its inverse Ja in (20.38). The computation is based on
the solutions to Problems 16.6 and 8.2.

Problem 20.2
The CLS has the following coefficient matrices:

Ac(p) =

[

A(p) +B2(p)DK(p)C2(p) B2(p)CK(p)
BK(p)C2(p) AK(p)

]

Bc(p) =

[

B1(p) +B2(p)DK(p)D21

BK(p)D21

]

Cc(p) =
[

C1(p) +D12DK(p)C2(p) D12CK(p)
]

Dc(p) = D11 +D12DK(p)D21.

The key point is how to avoid nonlinear terms of uncertain parameters ap-
pearing in these matrices. So, from the structure of these matrices we have
the following:

1. When B2(p), C2(p) both depend on p, to ensure linearity about p, DK

must be zero and BK , CK must be constant matrices.
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In this case

A(p) =N(AK0 +
∑

piAKi)M
T +NBK(C20 +

∑

piC2i)X

+ Y (B20 +
∑

piB2i)CKMT + Y (A0 +
∑

piAi)X

⇒A0 = NAK0M
T +NBKC20X + Y B20CKMT + Y A0X

Ai = NAKiM
T +NBKC2iX + Y B2iCKMT + Y AiX

⇒AK0 = N †{A0 − (NBKC20X + Y B20CKMT + Y A0X)}(M †)T

AKi = N †{Ai − (NBKC2iX + Y B2iCKMT + Y AiX)}(M †)T

B(p) =NBK = B ⇒ BK = N †
B

C(p) =CKMT = C ⇒ CK = C(M †)T

2. When both B2 and C2 are constant matrices, all matrices AK(p), BK(p),
CK(p), DK(p) may be affine in p.

3. When only B2 is constant, then BK and DK must be constant matrices.

In this case

A(p) = N(AK0 +
∑

piAKi)M
T +NBK(C20 +

∑

piC2i)X

+ Y B2(CK0 +
∑

piCi)M
T + Y [A0 +

∑

piAi +B2DK(C20 +
∑

piC2i)]X

⇒ A0 = NAK0M
T +NBKC20X + Y B2CK0M

T + Y (A0 +B2DKC20)X

Ai = NAKiM
T +NBKC2iX + Y B2CKiM

T + Y (Ai +B2DKC2i)X

⇒ AK0 = N †{A0 − [NBKC20X + Y B2CK0M
T + Y (A0 +B2DKC20)X]}(M †)T

AKi = N †{Ai − [NBKC2iX + Y B2CKiM
T + Y (Ai +B2DKC2i)X]}(M †)T

B(p) = NBK + Y B2DK = B ⇒ BK = N †(B− Y B2DK)

C(p) = (CK0 +
∑

piCKi)M
T +DK(C20 +

∑

piC2i)X

⇒ C0 = CK0M
T +DKC20X, Ci = CKiM

T +DKC2iX

⇒ CK0 = (C0 −DKC20X)(M †)T , CKi = (Ci −DKC2iX)(M †)T

D(p) = DK = D0

4. When only C2 is constant, then CK and DK must be constant matrices.
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In this case

A(p) = N(AK0 +
∑

piAKi)M
T +N(BK0 +

∑

piBKi)C2X

+ Y (B20 +
∑

piB2i)C2M
T + Y [A0 +

∑

piAi + (B20 +
∑

piB2i)DKC2]X

⇒ A0 = NAK0M
T +NBK0C2X + Y B20CKMT + Y (A0 +B20DKC2)X

Ai = NAKiM
T +NBKiC2X + Y B2iCKMT + Y (A0 +B2iDKC2)X

⇒ AK0 = N †{A0 − (NBK0C2X + Y B20CKMT + Y (A0 +B20DKC2)X)}(M †)T

AKi = N †{Ai − (NBKiC2X + Y B2iCKMT + Y (A0 +B2iDKC2)X)}(M †)T

B(p) = N(BK0 +
∑

piBKi) + Y (B20 +
∑

piB2i)DK

⇒ B0 = NBK0 + Y B20DK , Bi = NBKi + Y B2iDK

⇒ BK0 = N †(B0 − Y B20DK), BKi = N †(Bi − Y B2iDK)

C(p) = CKMT +DKC2X ⇒ CK = (C0 −DKC2X)(M †)T

D(p) = DK = D0
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Chapter 21

Problem 21.1
The function f(∆) = ∆2 maps the half disk centered at the origin and with
a radius ρ in the right half-plane into a full disk centered at the origin and

with a radius ρ2. Then, the function ∆p = ρ2+f
ρ2−f maps the disk onto the

whole right half-plane.
However, ∆ cannot be expressed as a bilinear function of ∆p. So, this
mapping cannot be used in system design.

Problem 21.2
Straightforward calculation, omitted.

Problem 21.3
Refer to the reference:
Kang-Zhi Liu, Masao Ono and Xiaoli Li: Revisiting The Robust Perfor-
mance Problem, Proc. of SICE2015, pp.650-653, Hangzhou (2015.07)


