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Overview of Lyapunov Stability TheoryLyapunov Stability TheoryNonlinear system (state vetor x 2 Rn )_x = f (x); x(0) 6= 0: (1)1 How to �nd a ondition to ensure the asymptoti stability?2 Lyapunov's idea: not to investigate the state trajetory diretly, butto examine the variation of energy instead.3 No external energy is supplied to system (1), so the motion must stopwhen the internal energy beomes zero.4 If we know whether the internal energy onverges to zero, we ande�nitely judge if the state onverges to the origin or not.June 9, 2019 3 / 49



Overview of Lyapunov Stability TheoryLyapunov Stability Theory1 As an energy funtion, we use a positive de�nite funtion alledLyapunov funtion V (x) > 0 8 x 6= 0: (2)2 If its time derivative satis�es_V (x) < 0 8x 6= 0; (3)then the onvergene of state is guaranteedlimt!1 x(t) = 0:
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Overview of Lyapunov Stability Theory Asymptoti Stability ConditionLinear ase _x = Ax ; x(0) 6= 0: (4)1 Lyapunov funtion V (x) = xTPx > 0 8x 6= 0: (5)2 Di�erentiation of V (x) = xTPx along the trajetory of _x = Ax_V (x) = _xTPx + xTP _x = (Ax)TPx + xTP(Ax)= xT (ATP + PA)x : (6)3 So _V (x) < 0 , ATP + PA < 0: (7)Theorem 1Linear system (1) is asymptotially stable i� there exists a P > 0 satisfying(7). June 9, 2019 5 / 49



Overview of Lyapunov Stability Theory Condition for State Convergene RateCondition for State Convergene Rate1 How to guarantee a onvergene rate of state?2 When the LMI ATP + PA+ 2�P < 0; � > 0: (8)has a positive de�nite solution P ,_V (x) = xT (ATP + PA)x < xT (�2�P)x = �2�V (x):3 Solution of _y = �2�y is y(t) = e�2�ty(0).4 Aording to the omparison priniple, V (x) satis�esV (x(t)) < e�2�tV (x(0)):5 Sine �min(P) kx(t)k2 � xT (x)Px(t) < e�2�txT (0)Px(0) �e�2�t�max(P) kx(0)k2kx(t)k <p�max(P)=�min(P) kx(0)k e��t ; (9)6 x(t) onverges to zero at a rate higher than �. June 9, 2019 6 / 49



Quadrati StabilityQuadrati Stability1 Unertain system _x = A(�)x ; x(0) 6= 0 (10)� 2 Rp is a bounded vetor of unertain parameters.2 Example: mass-spring-damper system (u = 0)_x = � 0 1� km � bm � x = A(m; b; k)xParameter vetor � = [m b k ℄T .3 Barmish's idea: use a ommon quadrati funtion V = xTPx toinvestigate the stability for the entire system setV (x) = xTPx > 0 8x 6= 0; _V (x ; �) < 0 8x 6= 0; �: (11)4 When this is possible, the system set is said to be quadratially stable.5 Although a very strong spe, quadrati stability is quite e�etive inengineering appliations. June 9, 2019 7 / 49



Quadrati Stability Condition for Quadrati StabilityCondition for Quadrati Stability1 From _V (x ; �) = xT (AT (�)P + PA(�))x , quadrati stability onditionis 9P > 0 satisfying AT (�)P + PA(�) < 0 8�: (12)2 Question: how to alulate a solution P for inequality (12)?3 No general solution exists. Results known for two lasses of A(�)Example 1 _x = �(2 + �)x ; � > �2:Sine AT (�)P + PA(�) = �(2 + �)P � P(2 + �) = �2(2 + �)P,AT (�)P + PA(�) = �2(2 + �) < 0 8� 2 (�2; 1)w.r.t. P = 1. Therefore, the stability is guaranteed. June 9, 2019 8 / 49



Quadrati Stability Polytopi SystemsPolytopi Systems _x = ( NXi=1 �iAi)x ; x(0) 6= 0 (13)1 Unertain parameters satisfy �i � 0; PNi=1 �i = 1.2 Quadrati stability ondition( NXi=1 �iAi)TP + P( NXi=1 �iAi) < 0 8�i, NXi=1 �i(ATi P + PAi ) < 0 8�i : (14)3 This inequality must hold at all verties of the polytope. Hene,ATi P + PAi < 0 8i = 1; : : : ;N (15)ATi P + PAi < 0 is the ondition for �i = 1; �j = 0 (j 6= i)June 9, 2019 9 / 49



Quadrati Stability Polytopi SystemsPolytopi Systems1 As all �i are nonnegative and their sum is 1, at least one of themmust be positive.2 So when (15) holds, we haveNXi=1 �i (ATi P + PAi) < 03 LMI onditions (15) at all verties are equivalent to the quadratistability ondition (12).
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Quadrati Stability Polytopi SystemsExample: mass-spring-damper system_x = � 0 1� km � bm � x :1 Parameter set1 � m � 2; 10 � k � 20; 5 � b � 10:2 � = [m b k ℄T forms a ube with eight verties.3 Quadrati stability ondition (15) has a solutionP = � 1:9791 �2:8455�2:8455 14:2391 � > 0:4 So the system is quadratially stable.5 This onlusion is very natural in view of the fat that the dampingoeÆient b is positive. June 9, 2019 11 / 49



Quadrati Stability Polytopi SystemsExample: mass-spring-damper system1 On the other hand, when the damping oeÆient ranges over0 � b � 5, the solution of (15) beomesP = � 0:85 0:90:9 10:26 �� 10�11 � 0whih is not positive de�nite.2 So we annot draw the onlusion that this system is quadratiallystable.3 In fat, this system set inludes a ase of zero damping. So thesystem set is not quadratially stable. June 9, 2019 12 / 49



Quadrati Stability Polytopi SystemsA generalization1 Parameter-dependent Lyapunov funtion may redue theonservatism.2 A simple example:_x = A(�)x = (A0 + �A1)x ; � 2 [�m; �M ℄:3 In view of the struture of A(�), we use a matrixP(�) = P0 + �P1:4 Then P(�)A(�) = P0A0 + �2P1A1 + �(P1A0 + P0A1):5 Due to �2, the polytopi struture is destroyed s.t. the stabilityondition annot be redued to the vertex onditions. In LMIapproah, so far there is no good solution for problems like this.June 9, 2019 13 / 49



Quadrati Stability Polytopi Systems1 Method of Gahinet et al.:V (x ; �) = xTP(�)x ; P(�) > 0:2 Its derivative is a quadrati funtion of �:_V (x ; �) =xT [(AT0 P0 + P0A0) + �2(AT1 P1 + P1A1)+ �(P1A0 + P0A1 + AT0 P1 + AT1 P0)℄x3 If _V (x ; �) is onvex in �, vertex onditionsA(�m)TP(�m)+P(�m)A(�m) < 0; A(�M)TP(�M)+P(�M)A(�M) < 0ensures _V (x ; �) < 0.4 Condition for onvexityd2d�2 _V (x ; �) = 2xT (AT1 P1 + P1A1)x � 0 ) AT1 P1 + P1A1 � 0:5 Lastly, P(�) > 0 is guaranteed by the vertex onditionsP(�m) > 0; P(�M) > 0: June 9, 2019 14 / 49



Quadrati Stability Norm-Bounded Parametri SystemsNorm-Bounded Parametri Systems1 Polytopi model is very e�etive in robustness analysis, but not goodfor design.2 Norm-bounded parametri systemsM � _x = Ax + Bwz = Cx + Dw w = �z ; k�(t)k2 � 1: (16)3 State equation of CLS_x = (A+ B�(I � D�)�1C )x ; k�(t)k2 � 1: (17)4 When �(t) varies freely in k�(t)k2 � 1, the invertible ondition forI � D� is kDk2 < 1 (Exerise 13.2).�M �- zwFigure: Parametri system June 9, 2019 15 / 49



Quadrati Stability Norm-Bounded Parametri SystemsNorm-Bounded Parametri SystemsTime-varying version of small-gain theorem (Exerise 13.3) yields that theCLS (M;�) is quadratially stable w.r.t. Lyapunov funtion V (x) = xTPxif there is P > 0 satisfying24 ATP + PA PB CTBTP �I DTC D �I 35 < 0; (18)Theorem 2The time-varying system (17) is quadratially stable i� there exists apositive de�nite matrix P satisfying (18). June 9, 2019 16 / 49



Quadrati Stability Norm-Bounded Parametri SystemsExample: mass-spring-damper systemm = m0(1 + w1Æ1); k = k0(1 + w2Æ2); b = b0(1 + w3Æ3); jÆi j � 1w1 = mmaxm0 � 1; w2 = kmaxk0 � 1; w3 = bmaxb0 � 1:After normalizing � = [Æ1 Æ2 Æ3℄, we haveA = � 0 1� k0m0 � b0m0 � ; B = � 01 � ; C = �p3264 k0m0w1 b0m0w1k0m0w2 00 b0m0w3 375D = �p3 � w1 0 0 �T :1 When 1 � m � 2; 10 � k � 20; 5 � b � 10, (18) has a solutionP = � 1:9791 �2:8455�2:8455 14:2391 � > 0:2 When 0 � b � 5, no solution exists for (18) and P > 0.June 9, 2019 17 / 49



Quadrati Stability Norm-Bounded Parametri SystemsProofSuÆieny:_V (x) = _xTPx + xTP _x = (Ax + Bw)TPx + xTP(Ax + Bw)= � xw �T � ATP + PA PBBTP 0 � � xw � : (19)k�(t)k2 � 1 implies wTw = zT�T�z � zT z . As z = Cx + Dw , we getU(x ;w) = � xw �T �� 0 00 I �� � CTDT � [C D℄�� xw � � 0: (20)It an be proved that x 6= 0 in any nonzero vetor � xw � satisfyingU(x ;w) � 0. June 9, 2019 18 / 49



Quadrati Stability Norm-Bounded Parametri Systems(18) is equivalent to (Shur's lemma)0 > � ATP + PA PBBTP �I �+ � CTDT � [C D℄= � ATP + PA PBBTP 0 ���� 0 00 I �� � CTDT � [C D℄� :Multiplying this inequality by � xw � 6= 0, we have_V (x) < U(x ;w) � 0:So the quadrati stability is proved.
June 9, 2019 19 / 49



Quadrati Stability Norm-Bounded Parametri SystemsNeessity: when the system is quadratially stable,_V (x) < 0; U(x ;w) � 0hold simultaneously for x 6= 0. For a bounded � xw �, _V (x) and U(x ;w)are also bounded. Enlarging _V (x) suitably by a fator � > 0, we have� _V (x) < U(x ;w) 8x 6= 0:Finally, absorbing � into P and renaming �P as P , we obtain_V (x)� U(x ;w) < 0 8 � xw � 6= 0:This inequality is equivalent to (18). rJune 9, 2019 20 / 49



Passive SystemsPassive Systems1 A system is alled passive if its transfer funtion is either PR, orstrongly PR, or stritly PR.2 CLS: unertainty �(s) is PR while the nominal CLS M(s) is eitherstrongly PR or stritly PR.3 Intuitively, the phase angle of a PR system is limited to [�90Æ; 90Æ℄and that of a strongly PR system restrited to (�90Æ; 90Æ). So thephase angle of the open-loop system is always not �180Æ and thestability of CLS may be expeted.�My u�Figure: Closed-loop system with a PR unertainty June 9, 2019 21 / 49



Passive Systems Strongly PR asePassive SystemsTheorem 3Assume that the unertainty �(s) is stable and PR. Then, the CLS isasymptotially stable if the nominal system M(s) is stable and strongly PR.�My u�Figure: Closed-loop system with a PR unertainty June 9, 2019 22 / 49



Passive Systems Strongly PR ase(Proof) Let the state equations of M and � be�(s) : _x1 = A1x1 + B1(�y); u = C1x1 + D1(�y)M(s) : _x2 = A2x2 + B2u; y = C2x2 + D2u:Aording to PR lemma and strongly PR lemma, 9 P > 0;Q > 0 satisfying� AT1 P + PA1 PB1BT1 P 0 �� � 0 CT1C1 D1 + DT1 � � 0 (21)� AT2 Q +QA2 QB2BT2 Q 0 �� � 0 CT2C2 D2 +DT2 � < 0 (22)Then, for V1(x1) = xT1 Px1 > 0; V2(x2) = xT2 Qx2 > 0 we have_V1(x1) � �uT y � yTu; _V2(x2) < uT y + yTu:Lyapunov andidate of CLS: V (x1; x2) = V1(x1) + V2(x2)_V (x1; x2) = _V1(x1) + _V2(x2) < 0Therefore, the CLS is asymptotially stable. June 9, 2019 23 / 49



Passive Systems Stritly PR asePassive SystemsTheorem 4Assume that the unertainty �(s) is stable and PR. The CLS isasymptotially stable if the nominal system M(s) is stable and there is aonstant � > 0 suh that M(s � �) is PR.�My u�Figure: Closed-loop system with a PR unertainty June 9, 2019 24 / 49



Passive Systems Stritly PR ase(Proof) The proof is similar to that of Theorem 3. The only di�erene isto replae the strongly PRness of M(s) by (modi�ed) stritly PRness, i.e.� (A2 + �I )TQ +Q(A2 + �I ) QB2BT2 Q 0 �� � 0 CT2C2 0 � � 0: (23)_V2(x2) � uT y + yTu � 2�xT2 Qx2 (24)So again, the Lyapunov andidate V (x1; x2) = V1(x1) + V2(x2) satis�es_V (x1; x2) = _V1(x1) + _V2(x2) � �2�xT2 Qx2When x2 is not identially zero, V (x1; x2) stritly dereases.When x2(t) � 0, y = C2x2 = 0. Substituting y = 0 into _x1, we have_x1 = A1x1 ) x1(t)! 0beause A1 is stable. Therefore, the CLS is asymptotially stable.June 9, 2019 25 / 49



Lur'e System Lur'e SystemLur'e System1 Linear system G (s) _x = Ax + Bu; y = Cx (25)x 2 Rn ; u 2 Rm ; y 2 Rm :2 Input u supplied by a stati nonlinearity �u = ��(y) (26)G��u y�(y)Figure: Lur'e system June 9, 2019 26 / 49



Lur'e System Lur'e System1 Nonlinearity �[�(y)� Kminy ℄T [�(y)� Kmaxy ℄ � 0; Kmax � Kmin > 0: (27)2 SISO ase (�(y)� �y)(�(y) � �y) � 0; 0 � � < �:3 � loated in setor [�; �℄ bounded by straight lines with slopes of�; �.
0 �y�y

y�(y)
Figure: Stati nonlinearity in a one June 9, 2019 27 / 49



Lur'e System Lur'e SystemA modern view of absolute stability1 Absolute stability: CLS asymptoti stability for all nonlinearities in asetor, named by Popov.2 Modern viewpoint:g(y) = �(y)=y an be regarded as a time-varying gain� � g(y) = �(y)y � �: (28)3 Lur'e system an be treated as a system with unertain time-varyinggain.4 Absolute stability equals the robust stability w.r.t. unertain gaing(y). June 9, 2019 28 / 49



Lur'e System Lur'e System1 Suppose 0 � g(y) � K , G (s) is stable.2 CLS is stable i� 1 + G (j!)g(y) does not enirle the origin.3 A losed urve enirling the origin must ross the imaginary axis. So,it is equivalent to <[1 + G (j!)g(y)℄ 6= 0 for all frequenies ! and allgains g(y).4 <[1 + G (j!)g(y)℄ = 1 > 0 when g(y) = 0.5 If <[1 + G (j!)g(y)℄ = <[1 + G (j!)K ℄ > 0 8!holds true for g(y) = K , then <[1 + G (j!)g(y)℄ > 0 is also true forany g(y) 2 [0;K ℄, implying the strongly positive-realness of1 + KG (s). June 9, 2019 29 / 49



Lur'e System A seond view on the stability onditionA guess on the stability onditionEssene of preeding ondition1 Ensuring the phase ondition \G (s)g(y) 6= �180Æ, Nyquist stabilityriterion is met regardless of the gain.2 Gain g(y) = �(y)=y is �nite, whih an be extended to the in�nityvia a transformation: 0 � gN = g1� g=K <1:Further, gN !1 as g ! K .3 Corresponding to a blok diagram transformation June 9, 2019 30 / 49



Lur'e System A seond view on the stability onditionA seond view on the stability ondition1 New linear systemGN(s) = G (s) + 1K = 1K (1 + KG (s)):2 \GN(s)gN (y) will never be �180Æ so long as 1 + KG (s) is PR.3 As suh, stability of the losed-loop system is guaranteed.� GK�1K�1�
GN
�N

u y yN
June 9, 2019 31 / 49



Lur'e System stability onditionFormal statement1 The system under onsideration is nonlinear, so the preedingdisussion is not rigorous. A rigorous proof is done by using Lyapunovstability theory.Lemma 1Assume that A is stable and the nonlinearity � satis�es�T (�� Ky) � 0:Then, the CLS is asymptotially stable ifZ (s) = I + KG (s)is strongly positive-real. June 9, 2019 32 / 49



Lur'e System stability onditionProofZ �(j!) + Z (j!) an be written asZ �(j!)+Z (j!) = � (j!I � A)�1BI �� � 0 (KC )TKC 2I � � (j!I � A)�1BI � :When Z (s) is strongly PR, 9P satisfying (KYP lemma)� � 0 (KC )TKC 2I �+ � ATP + PA PBBTP 0 � < 0: (29)P > 0 follows from the (1; 1) blok ATP + PA < 0 and the stability of A.Lyapunov funtion andidate V (x) = xTPxis radially unbounded. June 9, 2019 33 / 49



Lur'e System stability ondition_V (x) = xT (ATP + PA)x + xTPBu + uTBTPx= � xu �T � ATP + PA PBBTP 0 � � xu �< � xu �T � 0 (KC )TKC 2I � � xu �= 2 huT (KCx) + uTui= 2 huTKy + uTuias long as x 6= 0. Substitution of u = ��(y) yields_V (x) < 2�T [�� Ky ℄ � 0; x 6= 0:This implies the asymptoti stability of the CLS. June 9, 2019 34 / 49



Lur'e System stability onditionExample 2Consider a linear systemG (s) = 6(s + 1)(s + 2)(s + 3) :� is the ideal saturation funtion ontained in setor [0; 1℄ (K = 1)�(y) = y ; jy j < 1; �(y) = yjy j ; jy j � 1:Strongly PR ondition of Z (s) = 1 + G (s) is<[G (j!)℄ > �1:Nyquist ontour is loated on the right side of the straight line <[s℄ = �1and satis�es the stability ondition of Lemma 1. June 9, 2019 35 / 49



Lur'e System stability ondition
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Lur'e System Cirle riterionNonlinearity in a general one1 General one [Kmin;Kmax℄2 Transformed into [0;Kmax � Kmin℄3 Linear system turns into G (I + KminG )�1.� GKminKmin�
GN
�N

u y
yN�
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Lur'e System Cirle riterionStability onditionTheorem 5In the CLS omposed of G (s) of (25) and nonlinearity � of (27), ifGN(s) = G (s)[I + KminG (s)℄�1is stable and ZN(s) = [I + KmaxG (s)℄[I + KminG (s)℄�1is strongly PR, then the CLS is asymptotially stable
June 9, 2019 38 / 49



Lur'e System Cirle riterionCirle riterionTheorem 6 (Cirle riterion)Consider an SISO Lur'e system. Assume � 2 [�; �℄ and de�ne a diskD(�; �) = �z 2 C ��� ����z + �+ �2�� ���� � ����� � �2�� ����� :Then, the CLS is asymptotially stable if one of the following holds.(1) 0 < � < �: G (j!) does not enter D(�; �) and enirle it p timesounterlokwise (p is the number of unstable poles of G (s)).(2) 0 = � < �: G (s) is stable and G (j!) satis�es<[G (j!)℄ > � 1� :(3) � < 0 < �: G (s) is stable and G (j!) lies in the interior of D(�; �).June 9, 2019 39 / 49



Lur'e System Cirle riterionIm Re0� 1� � 1�(a) Case 1: 0 < � < �
Im Re0� 1�

(b) Case 2: 0 = � < �Im Re0� 1� � 1� () Case 3: � < 0 < �June 9, 2019 40 / 49



Lur'e System Cirle riterionExample 3Linear system G (s) = 6(s + 1)(s + 2)(s + 3)Nonlinearity �: one of the following setors(1) [1; 3℄, (2) [0; 2℄, (3) [�1; 1℄Cirle riterion for eah setor is given by(1) jG (j!) + 23 j � 13 , (2) <[G (j!)℄ � �12 , (3) jG (j!)j � 1.Nyquist ontour on p.36 shows that all these onditions are met.Therefore, the CLS is stable for stati nonlinearity in any of these setors.June 9, 2019 41 / 49



Lur'e System Cirle riterion
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Lur'e System Popov riterionPopov transformation� G K�1K�1�
GN
�N

u y
yN1 + �s

11+�sFigure: Equivalent transformation of Lur'e system: Popov riterionJune 9, 2019 43 / 49



Lur'e System Popov riterion1 Motivation: Phase angle of the OLS an get arbitrarily lose to�180Æ, so some phase an be put into the transformed nonlinearity.2 Nonlinearity �(y)T [�(y)� Ky ℄ � 0; K > 0: (30)3 Transformed nonlinearity: PR funtiongN = g 11+�s1� K�1g 11+�s = g1� K�1g + �s ; � > 0; (31)1 When ! � 0, its phase angle hanges from 0Æ to �90Æ.2 When g ! K and ! ! 0, the gain approahes +1.3 When ! !1 or g ! 0, the gain onverges to 0.Theorem 7 (Popov Criterion)Let A be stable. Then, the CLS is asymptotially stable if 9� > 0 s.tZ (s) = I + (1 + �s)KG (s)is strongly PR. June 9, 2019 44 / 49



Lur'e System Popov riterionProofBy s(sI � A)�1 = I + A(sI � A)�1, we haveZ (s) = � KC (I + �A) I + �KCB � � (sI � A)�1BI �� (j!I � A)�1BI �� � 0 (KC (I + �A))TKC (I + �A) 2(I + �KCB) � � (j!I � A)�1BI � :Sine Z (s) is strongly PR, there holds� � 0 (KC (I + �A))TKC (I + �A) 2(I + �KCB) �+ � ATP + PA PBBTP 0 � < 0: (32)P > 0 follows from the (1; 1) blok ATP + PA < 0 and the stability of A.Lur'e-Postnikov type Lyapunov funtionV (x) = xTPx + 2� Z y0 �(v)TKdv : (33)This V (x) is positive de�nite and radially unbounded. June 9, 2019 45 / 49



Lur'e System Popov riterion_V (x) = xT (ATP + PA)x + xTPBu + uTBTPx + 2��(y)TK _y= xT (ATP + PA)x + xTPBu + uTBTPx � 2�uTKC (Ax + Bu)= � xu �T (� ATP + PA PBBTP 0 �� � 0 (�KCA)T�KCA 2�KCB �) � xu �< � xu �T � 0 (KC )TKC 2I � � xu �= 2 huT (KCx) + uTui= 2 huTKy + uTuias long as x 6= 0. Substitution of u = ��(y) yields_V (x) < 2�T [�� Ky ℄ � 0 8x 6= 0:Therefore, the CLS is asymptotially stable. June 9, 2019 46 / 49



Lur'e System Popov riterionFor SISO systems, strongly PR ondition of Z (s)<[1 + (1 + j�!)KG (j!)℄ > 0 8!is equivalent to 1K + <[G (j!)℄� �!=[G (j!)℄ > 0 8!:On Cartesian oordinate (x ; y) = (<[G (j!)℄; !=[G (j!)℄), it beomes1K + x(!) > �y(!) 8!:Trajetory (x(!); y(!)) is loated below a line passing through (�1=K ; 0)and with a slope 1=�. !=(G ) <(G )0� 1K 1�
June 9, 2019 47 / 49



Lur'e System Popov riterionExample 4Linear system G (s) = 6(s + 1)(s + 2)(s + 3) :When the setor is expanded to [0; 5℄, vertial line �1=� = �0:2 intersetsthe Nyquist ontour on p.36 so that the irle riterion is not satis�ed.However, Popov riterion is met (Figure on the next page). Therefore, theCLS remains stable even in this ase.Popov riterion is weaker than irle riterion and has a wider �eld ofappliations. June 9, 2019 48 / 49



Lur'e System Popov riterion
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Figure: Popov plot of Example 4: K = 5; � = 1 June 9, 2019 49 / 49
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