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Overview of Lyapunov Stability TheoryLyapunov Stability TheoryNonlinear system (state ve
tor x 2 Rn )_x = f (x); x(0) 6= 0: (1)1 How to �nd a 
ondition to ensure the asymptoti
 stability?2 Lyapunov's idea: not to investigate the state traje
tory dire
tly, butto examine the variation of energy instead.3 No external energy is supplied to system (1), so the motion must stopwhen the internal energy be
omes zero.4 If we know whether the internal energy 
onverges to zero, we 
ande�nitely judge if the state 
onverges to the origin or not.June 9, 2019 3 / 49



Overview of Lyapunov Stability TheoryLyapunov Stability Theory1 As an energy fun
tion, we use a positive de�nite fun
tion 
alledLyapunov fun
tion V (x) > 0 8 x 6= 0: (2)2 If its time derivative satis�es_V (x) < 0 8x 6= 0; (3)then the 
onvergen
e of state is guaranteedlimt!1 x(t) = 0:
June 9, 2019 4 / 49



Overview of Lyapunov Stability Theory Asymptoti
 Stability ConditionLinear 
ase _x = Ax ; x(0) 6= 0: (4)1 Lyapunov fun
tion V (x) = xTPx > 0 8x 6= 0: (5)2 Di�erentiation of V (x) = xTPx along the traje
tory of _x = Ax_V (x) = _xTPx + xTP _x = (Ax)TPx + xTP(Ax)= xT (ATP + PA)x : (6)3 So _V (x) < 0 , ATP + PA < 0: (7)Theorem 1Linear system (1) is asymptoti
ally stable i� there exists a P > 0 satisfying(7). June 9, 2019 5 / 49



Overview of Lyapunov Stability Theory Condition for State Convergen
e RateCondition for State Convergen
e Rate1 How to guarantee a 
onvergen
e rate of state?2 When the LMI ATP + PA+ 2�P < 0; � > 0: (8)has a positive de�nite solution P ,_V (x) = xT (ATP + PA)x < xT (�2�P)x = �2�V (x):3 Solution of _y = �2�y is y(t) = e�2�ty(0).4 A

ording to the 
omparison prin
iple, V (x) satis�esV (x(t)) < e�2�tV (x(0)):5 Sin
e �min(P) kx(t)k2 � xT (x)Px(t) < e�2�txT (0)Px(0) �e�2�t�max(P) kx(0)k2kx(t)k <p�max(P)=�min(P) kx(0)k e��t ; (9)6 x(t) 
onverges to zero at a rate higher than �. June 9, 2019 6 / 49



Quadrati
 StabilityQuadrati
 Stability1 Un
ertain system _x = A(�)x ; x(0) 6= 0 (10)� 2 Rp is a bounded ve
tor of un
ertain parameters.2 Example: mass-spring-damper system (u = 0)_x = � 0 1� km � bm � x = A(m; b; k)xParameter ve
tor � = [m b k ℄T .3 Barmish's idea: use a 
ommon quadrati
 fun
tion V = xTPx toinvestigate the stability for the entire system setV (x) = xTPx > 0 8x 6= 0; _V (x ; �) < 0 8x 6= 0; �: (11)4 When this is possible, the system set is said to be quadrati
ally stable.5 Although a very strong spe
, quadrati
 stability is quite e�e
tive inengineering appli
ations. June 9, 2019 7 / 49



Quadrati
 Stability Condition for Quadrati
 StabilityCondition for Quadrati
 Stability1 From _V (x ; �) = xT (AT (�)P + PA(�))x , quadrati
 stability 
onditionis 9P > 0 satisfying AT (�)P + PA(�) < 0 8�: (12)2 Question: how to 
al
ulate a solution P for inequality (12)?3 No general solution exists. Results known for two 
lasses of A(�)Example 1 _x = �(2 + �)x ; � > �2:Sin
e AT (�)P + PA(�) = �(2 + �)P � P(2 + �) = �2(2 + �)P,AT (�)P + PA(�) = �2(2 + �) < 0 8� 2 (�2; 1)w.r.t. P = 1. Therefore, the stability is guaranteed. June 9, 2019 8 / 49



Quadrati
 Stability Polytopi
 SystemsPolytopi
 Systems _x = ( NXi=1 �iAi)x ; x(0) 6= 0 (13)1 Un
ertain parameters satisfy �i � 0; PNi=1 �i = 1.2 Quadrati
 stability 
ondition( NXi=1 �iAi)TP + P( NXi=1 �iAi) < 0 8�i, NXi=1 �i(ATi P + PAi ) < 0 8�i : (14)3 This inequality must hold at all verti
es of the polytope. Hen
e,ATi P + PAi < 0 8i = 1; : : : ;N (15)ATi P + PAi < 0 is the 
ondition for �i = 1; �j = 0 (j 6= i)June 9, 2019 9 / 49



Quadrati
 Stability Polytopi
 SystemsPolytopi
 Systems1 As all �i are nonnegative and their sum is 1, at least one of themmust be positive.2 So when (15) holds, we haveNXi=1 �i (ATi P + PAi) < 03 LMI 
onditions (15) at all verti
es are equivalent to the quadrati
stability 
ondition (12).
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Quadrati
 Stability Polytopi
 SystemsExample: mass-spring-damper system_x = � 0 1� km � bm � x :1 Parameter set1 � m � 2; 10 � k � 20; 5 � b � 10:2 � = [m b k ℄T forms a 
ube with eight verti
es.3 Quadrati
 stability 
ondition (15) has a solutionP = � 1:9791 �2:8455�2:8455 14:2391 � > 0:4 So the system is quadrati
ally stable.5 This 
on
lusion is very natural in view of the fa
t that the damping
oeÆ
ient b is positive. June 9, 2019 11 / 49



Quadrati
 Stability Polytopi
 SystemsExample: mass-spring-damper system1 On the other hand, when the damping 
oeÆ
ient ranges over0 � b � 5, the solution of (15) be
omesP = � 0:85 0:90:9 10:26 �� 10�11 � 0whi
h is not positive de�nite.2 So we 
annot draw the 
on
lusion that this system is quadrati
allystable.3 In fa
t, this system set in
ludes a 
ase of zero damping. So thesystem set is not quadrati
ally stable. June 9, 2019 12 / 49



Quadrati
 Stability Polytopi
 SystemsA generalization1 Parameter-dependent Lyapunov fun
tion may redu
e the
onservatism.2 A simple example:_x = A(�)x = (A0 + �A1)x ; � 2 [�m; �M ℄:3 In view of the stru
ture of A(�), we use a matrixP(�) = P0 + �P1:4 Then P(�)A(�) = P0A0 + �2P1A1 + �(P1A0 + P0A1):5 Due to �2, the polytopi
 stru
ture is destroyed s.t. the stability
ondition 
annot be redu
ed to the vertex 
onditions. In LMIapproa
h, so far there is no good solution for problems like this.June 9, 2019 13 / 49



Quadrati
 Stability Polytopi
 Systems1 Method of Gahinet et al.:V (x ; �) = xTP(�)x ; P(�) > 0:2 Its derivative is a quadrati
 fun
tion of �:_V (x ; �) =xT [(AT0 P0 + P0A0) + �2(AT1 P1 + P1A1)+ �(P1A0 + P0A1 + AT0 P1 + AT1 P0)℄x3 If _V (x ; �) is 
onvex in �, vertex 
onditionsA(�m)TP(�m)+P(�m)A(�m) < 0; A(�M)TP(�M)+P(�M)A(�M) < 0ensures _V (x ; �) < 0.4 Condition for 
onvexityd2d�2 _V (x ; �) = 2xT (AT1 P1 + P1A1)x � 0 ) AT1 P1 + P1A1 � 0:5 Lastly, P(�) > 0 is guaranteed by the vertex 
onditionsP(�m) > 0; P(�M) > 0: June 9, 2019 14 / 49



Quadrati
 Stability Norm-Bounded Parametri
 SystemsNorm-Bounded Parametri
 Systems1 Polytopi
 model is very e�e
tive in robustness analysis, but not goodfor design.2 Norm-bounded parametri
 systemsM � _x = Ax + Bwz = Cx + Dw w = �z ; k�(t)k2 � 1: (16)3 State equation of CLS_x = (A+ B�(I � D�)�1C )x ; k�(t)k2 � 1: (17)4 When �(t) varies freely in k�(t)k2 � 1, the invertible 
ondition forI � D� is kDk2 < 1 (Exer
ise 13.2).�M �- zwFigure: Parametri
 system June 9, 2019 15 / 49



Quadrati
 Stability Norm-Bounded Parametri
 SystemsNorm-Bounded Parametri
 SystemsTime-varying version of small-gain theorem (Exer
ise 13.3) yields that theCLS (M;�) is quadrati
ally stable w.r.t. Lyapunov fun
tion V (x) = xTPxif there is P > 0 satisfying24 ATP + PA PB CTBTP �I DTC D �I 35 < 0; (18)Theorem 2The time-varying system (17) is quadrati
ally stable i� there exists apositive de�nite matrix P satisfying (18). June 9, 2019 16 / 49



Quadrati
 Stability Norm-Bounded Parametri
 SystemsExample: mass-spring-damper systemm = m0(1 + w1Æ1); k = k0(1 + w2Æ2); b = b0(1 + w3Æ3); jÆi j � 1w1 = mmaxm0 � 1; w2 = kmaxk0 � 1; w3 = bmaxb0 � 1:After normalizing � = [Æ1 Æ2 Æ3℄, we haveA = � 0 1� k0m0 � b0m0 � ; B = � 01 � ; C = �p3264 k0m0w1 b0m0w1k0m0w2 00 b0m0w3 375D = �p3 � w1 0 0 �T :1 When 1 � m � 2; 10 � k � 20; 5 � b � 10, (18) has a solutionP = � 1:9791 �2:8455�2:8455 14:2391 � > 0:2 When 0 � b � 5, no solution exists for (18) and P > 0.June 9, 2019 17 / 49



Quadrati
 Stability Norm-Bounded Parametri
 SystemsProofSuÆ
ien
y:_V (x) = _xTPx + xTP _x = (Ax + Bw)TPx + xTP(Ax + Bw)= � xw �T � ATP + PA PBBTP 0 � � xw � : (19)k�(t)k2 � 1 implies wTw = zT�T�z � zT z . As z = Cx + Dw , we getU(x ;w) = � xw �T �� 0 00 I �� � CTDT � [C D℄�� xw � � 0: (20)It 
an be proved that x 6= 0 in any nonzero ve
tor � xw � satisfyingU(x ;w) � 0. June 9, 2019 18 / 49



Quadrati
 Stability Norm-Bounded Parametri
 Systems(18) is equivalent to (S
hur's lemma)0 > � ATP + PA PBBTP �I �+ � CTDT � [C D℄= � ATP + PA PBBTP 0 ���� 0 00 I �� � CTDT � [C D℄� :Multiplying this inequality by � xw � 6= 0, we have_V (x) < U(x ;w) � 0:So the quadrati
 stability is proved.
June 9, 2019 19 / 49



Quadrati
 Stability Norm-Bounded Parametri
 SystemsNe
essity: when the system is quadrati
ally stable,_V (x) < 0; U(x ;w) � 0hold simultaneously for x 6= 0. For a bounded � xw �, _V (x) and U(x ;w)are also bounded. Enlarging _V (x) suitably by a fa
tor � > 0, we have� _V (x) < U(x ;w) 8x 6= 0:Finally, absorbing � into P and renaming �P as P , we obtain_V (x)� U(x ;w) < 0 8 � xw � 6= 0:This inequality is equivalent to (18). rJune 9, 2019 20 / 49



Passive SystemsPassive Systems1 A system is 
alled passive if its transfer fun
tion is either PR, orstrongly PR, or stri
tly PR.2 CLS: un
ertainty �(s) is PR while the nominal CLS M(s) is eitherstrongly PR or stri
tly PR.3 Intuitively, the phase angle of a PR system is limited to [�90Æ; 90Æ℄and that of a strongly PR system restri
ted to (�90Æ; 90Æ). So thephase angle of the open-loop system is always not �180Æ and thestability of CLS may be expe
ted.�My u�Figure: Closed-loop system with a PR un
ertainty June 9, 2019 21 / 49



Passive Systems Strongly PR 
asePassive SystemsTheorem 3Assume that the un
ertainty �(s) is stable and PR. Then, the CLS isasymptoti
ally stable if the nominal system M(s) is stable and strongly PR.�My u�Figure: Closed-loop system with a PR un
ertainty June 9, 2019 22 / 49



Passive Systems Strongly PR 
ase(Proof) Let the state equations of M and � be�(s) : _x1 = A1x1 + B1(�y); u = C1x1 + D1(�y)M(s) : _x2 = A2x2 + B2u; y = C2x2 + D2u:A

ording to PR lemma and strongly PR lemma, 9 P > 0;Q > 0 satisfying� AT1 P + PA1 PB1BT1 P 0 �� � 0 CT1C1 D1 + DT1 � � 0 (21)� AT2 Q +QA2 QB2BT2 Q 0 �� � 0 CT2C2 D2 +DT2 � < 0 (22)Then, for V1(x1) = xT1 Px1 > 0; V2(x2) = xT2 Qx2 > 0 we have_V1(x1) � �uT y � yTu; _V2(x2) < uT y + yTu:Lyapunov 
andidate of CLS: V (x1; x2) = V1(x1) + V2(x2)_V (x1; x2) = _V1(x1) + _V2(x2) < 0Therefore, the CLS is asymptoti
ally stable. June 9, 2019 23 / 49



Passive Systems Stri
tly PR 
asePassive SystemsTheorem 4Assume that the un
ertainty �(s) is stable and PR. The CLS isasymptoti
ally stable if the nominal system M(s) is stable and there is a
onstant � > 0 su
h that M(s � �) is PR.�My u�Figure: Closed-loop system with a PR un
ertainty June 9, 2019 24 / 49



Passive Systems Stri
tly PR 
ase(Proof) The proof is similar to that of Theorem 3. The only di�eren
e isto repla
e the strongly PRness of M(s) by (modi�ed) stri
tly PRness, i.e.� (A2 + �I )TQ +Q(A2 + �I ) QB2BT2 Q 0 �� � 0 CT2C2 0 � � 0: (23)_V2(x2) � uT y + yTu � 2�xT2 Qx2 (24)So again, the Lyapunov 
andidate V (x1; x2) = V1(x1) + V2(x2) satis�es_V (x1; x2) = _V1(x1) + _V2(x2) � �2�xT2 Qx2When x2 is not identi
ally zero, V (x1; x2) stri
tly de
reases.When x2(t) � 0, y = C2x2 = 0. Substituting y = 0 into _x1, we have_x1 = A1x1 ) x1(t)! 0be
ause A1 is stable. Therefore, the CLS is asymptoti
ally stable.June 9, 2019 25 / 49



Lur'e System Lur'e SystemLur'e System1 Linear system G (s) _x = Ax + Bu; y = Cx (25)x 2 Rn ; u 2 Rm ; y 2 Rm :2 Input u supplied by a stati
 nonlinearity �u = ��(y) (26)G��u y�(y)Figure: Lur'e system June 9, 2019 26 / 49



Lur'e System Lur'e System1 Nonlinearity �[�(y)� Kminy ℄T [�(y)� Kmaxy ℄ � 0; Kmax � Kmin > 0: (27)2 SISO 
ase (�(y)� �y)(�(y) � �y) � 0; 0 � � < �:3 � lo
ated in se
tor [�; �℄ bounded by straight lines with slopes of�; �.
0 �y�y

y�(y)
Figure: Stati
 nonlinearity in a 
one June 9, 2019 27 / 49



Lur'e System Lur'e SystemA modern view of absolute stability1 Absolute stability: CLS asymptoti
 stability for all nonlinearities in ase
tor, named by Popov.2 Modern viewpoint:g(y) = �(y)=y 
an be regarded as a time-varying gain� � g(y) = �(y)y � �: (28)3 Lur'e system 
an be treated as a system with un
ertain time-varyinggain.4 Absolute stability equals the robust stability w.r.t. un
ertain gaing(y). June 9, 2019 28 / 49



Lur'e System Lur'e System1 Suppose 0 � g(y) � K , G (s) is stable.2 CLS is stable i� 1 + G (j!)g(y) does not en
ir
le the origin.3 A 
losed 
urve en
ir
ling the origin must 
ross the imaginary axis. So,it is equivalent to <[1 + G (j!)g(y)℄ 6= 0 for all frequen
ies ! and allgains g(y).4 <[1 + G (j!)g(y)℄ = 1 > 0 when g(y) = 0.5 If <[1 + G (j!)g(y)℄ = <[1 + G (j!)K ℄ > 0 8!holds true for g(y) = K , then <[1 + G (j!)g(y)℄ > 0 is also true forany g(y) 2 [0;K ℄, implying the strongly positive-realness of1 + KG (s). June 9, 2019 29 / 49



Lur'e System A se
ond view on the stability 
onditionA guess on the stability 
onditionEssen
e of pre
eding 
ondition1 Ensuring the phase 
ondition \G (s)g(y) 6= �180Æ, Nyquist stability
riterion is met regardless of the gain.2 Gain g(y) = �(y)=y is �nite, whi
h 
an be extended to the in�nityvia a transformation: 0 � gN = g1� g=K <1:Further, gN !1 as g ! K .3 Corresponding to a blo
k diagram transformation June 9, 2019 30 / 49



Lur'e System A se
ond view on the stability 
onditionA se
ond view on the stability 
ondition1 New linear systemGN(s) = G (s) + 1K = 1K (1 + KG (s)):2 \GN(s)gN (y) will never be �180Æ so long as 1 + KG (s) is PR.3 As su
h, stability of the 
losed-loop system is guaranteed.� GK�1K�1�
GN
�N

u y yN
June 9, 2019 31 / 49



Lur'e System stability 
onditionFormal statement1 The system under 
onsideration is nonlinear, so the pre
edingdis
ussion is not rigorous. A rigorous proof is done by using Lyapunovstability theory.Lemma 1Assume that A is stable and the nonlinearity � satis�es�T (�� Ky) � 0:Then, the CLS is asymptoti
ally stable ifZ (s) = I + KG (s)is strongly positive-real. June 9, 2019 32 / 49



Lur'e System stability 
onditionProofZ �(j!) + Z (j!) 
an be written asZ �(j!)+Z (j!) = � (j!I � A)�1BI �� � 0 (KC )TKC 2I � � (j!I � A)�1BI � :When Z (s) is strongly PR, 9P satisfying (KYP lemma)� � 0 (KC )TKC 2I �+ � ATP + PA PBBTP 0 � < 0: (29)P > 0 follows from the (1; 1) blo
k ATP + PA < 0 and the stability of A.Lyapunov fun
tion 
andidate V (x) = xTPxis radially unbounded. June 9, 2019 33 / 49



Lur'e System stability 
ondition_V (x) = xT (ATP + PA)x + xTPBu + uTBTPx= � xu �T � ATP + PA PBBTP 0 � � xu �< � xu �T � 0 (KC )TKC 2I � � xu �= 2 huT (KCx) + uTui= 2 huTKy + uTuias long as x 6= 0. Substitution of u = ��(y) yields_V (x) < 2�T [�� Ky ℄ � 0; x 6= 0:This implies the asymptoti
 stability of the CLS. June 9, 2019 34 / 49



Lur'e System stability 
onditionExample 2Consider a linear systemG (s) = 6(s + 1)(s + 2)(s + 3) :� is the ideal saturation fun
tion 
ontained in se
tor [0; 1℄ (K = 1)�(y) = y ; jy j < 1; �(y) = yjy j ; jy j � 1:Strongly PR 
ondition of Z (s) = 1 + G (s) is<[G (j!)℄ > �1:Nyquist 
ontour is lo
ated on the right side of the straight line <[s℄ = �1and satis�es the stability 
ondition of Lemma 1. June 9, 2019 35 / 49



Lur'e System stability 
ondition

Real Axis

Im
a

g
in

a
ry

 A
xi

s

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure: Nyquist 
ontour June 9, 2019 36 / 49



Lur'e System Cir
le 
riterionNonlinearity in a general 
one1 General 
one [Kmin;Kmax℄2 Transformed into [0;Kmax � Kmin℄3 Linear system turns into G (I + KminG )�1.� GKminKmin�
GN
�N

u y
yN�

� June 9, 2019 37 / 49



Lur'e System Cir
le 
riterionStability 
onditionTheorem 5In the CLS 
omposed of G (s) of (25) and nonlinearity � of (27), ifGN(s) = G (s)[I + KminG (s)℄�1is stable and ZN(s) = [I + KmaxG (s)℄[I + KminG (s)℄�1is strongly PR, then the CLS is asymptoti
ally stable
June 9, 2019 38 / 49



Lur'e System Cir
le 
riterionCir
le 
riterionTheorem 6 (Cir
le 
riterion)Consider an SISO Lur'e system. Assume � 2 [�; �℄ and de�ne a diskD(�; �) = �z 2 C ��� ����z + �+ �2�� ���� � ����� � �2�� ����� :Then, the CLS is asymptoti
ally stable if one of the following holds.(1) 0 < � < �: G (j!) does not enter D(�; �) and en
ir
le it p times
ounter
lo
kwise (p is the number of unstable poles of G (s)).(2) 0 = � < �: G (s) is stable and G (j!) satis�es<[G (j!)℄ > � 1� :(3) � < 0 < �: G (s) is stable and G (j!) lies in the interior of D(�; �).June 9, 2019 39 / 49



Lur'e System Cir
le 
riterionIm Re0� 1� � 1�(a) Case 1: 0 < � < �
Im Re0� 1�

(b) Case 2: 0 = � < �Im Re0� 1� � 1� (
) Case 3: � < 0 < �June 9, 2019 40 / 49



Lur'e System Cir
le 
riterionExample 3Linear system G (s) = 6(s + 1)(s + 2)(s + 3)Nonlinearity �: one of the following se
tors(1) [1; 3℄, (2) [0; 2℄, (3) [�1; 1℄Cir
le 
riterion for ea
h se
tor is given by(1) jG (j!) + 23 j � 13 , (2) <[G (j!)℄ � �12 , (3) jG (j!)j � 1.Nyquist 
ontour on p.36 shows that all these 
onditions are met.Therefore, the CLS is stable for stati
 nonlinearity in any of these se
tors.June 9, 2019 41 / 49



Lur'e System Cir
le 
riterion
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Lur'e System Popov 
riterionPopov transformation� G K�1K�1�
GN
�N

u y
yN1 + �s

11+�sFigure: Equivalent transformation of Lur'e system: Popov 
riterionJune 9, 2019 43 / 49



Lur'e System Popov 
riterion1 Motivation: Phase angle of the OLS 
an get arbitrarily 
lose to�180Æ, so some phase 
an be put into the transformed nonlinearity.2 Nonlinearity �(y)T [�(y)� Ky ℄ � 0; K > 0: (30)3 Transformed nonlinearity: PR fun
tiongN = g 11+�s1� K�1g 11+�s = g1� K�1g + �s ; � > 0; (31)1 When ! � 0, its phase angle 
hanges from 0Æ to �90Æ.2 When g ! K and ! ! 0, the gain approa
hes +1.3 When ! !1 or g ! 0, the gain 
onverges to 0.Theorem 7 (Popov Criterion)Let A be stable. Then, the CLS is asymptoti
ally stable if 9� > 0 s.tZ (s) = I + (1 + �s)KG (s)is strongly PR. June 9, 2019 44 / 49



Lur'e System Popov 
riterionProofBy s(sI � A)�1 = I + A(sI � A)�1, we haveZ (s) = � KC (I + �A) I + �KCB � � (sI � A)�1BI �� (j!I � A)�1BI �� � 0 (KC (I + �A))TKC (I + �A) 2(I + �KCB) � � (j!I � A)�1BI � :Sin
e Z (s) is strongly PR, there holds� � 0 (KC (I + �A))TKC (I + �A) 2(I + �KCB) �+ � ATP + PA PBBTP 0 � < 0: (32)P > 0 follows from the (1; 1) blo
k ATP + PA < 0 and the stability of A.Lur'e-Postnikov type Lyapunov fun
tionV (x) = xTPx + 2� Z y0 �(v)TKdv : (33)This V (x) is positive de�nite and radially unbounded. June 9, 2019 45 / 49



Lur'e System Popov 
riterion_V (x) = xT (ATP + PA)x + xTPBu + uTBTPx + 2��(y)TK _y= xT (ATP + PA)x + xTPBu + uTBTPx � 2�uTKC (Ax + Bu)= � xu �T (� ATP + PA PBBTP 0 �� � 0 (�KCA)T�KCA 2�KCB �) � xu �< � xu �T � 0 (KC )TKC 2I � � xu �= 2 huT (KCx) + uTui= 2 huTKy + uTuias long as x 6= 0. Substitution of u = ��(y) yields_V (x) < 2�T [�� Ky ℄ � 0 8x 6= 0:Therefore, the CLS is asymptoti
ally stable. June 9, 2019 46 / 49



Lur'e System Popov 
riterionFor SISO systems, strongly PR 
ondition of Z (s)<[1 + (1 + j�!)KG (j!)℄ > 0 8!is equivalent to 1K + <[G (j!)℄� �!=[G (j!)℄ > 0 8!:On Cartesian 
oordinate (x ; y) = (<[G (j!)℄; !=[G (j!)℄), it be
omes1K + x(!) > �y(!) 8!:Traje
tory (x(!); y(!)) is lo
ated below a line passing through (�1=K ; 0)and with a slope 1=�. !=(G ) <(G )0� 1K 1�
June 9, 2019 47 / 49



Lur'e System Popov 
riterionExample 4Linear system G (s) = 6(s + 1)(s + 2)(s + 3) :When the se
tor is expanded to [0; 5℄, verti
al line �1=� = �0:2 interse
tsthe Nyquist 
ontour on p.36 so that the 
ir
le 
riterion is not satis�ed.However, Popov 
riterion is met (Figure on the next page). Therefore, theCLS remains stable even in this 
ase.Popov 
riterion is weaker than 
ir
le 
riterion and has a wider �eld ofappli
ations. June 9, 2019 48 / 49
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Figure: Popov plot of Example 4: K = 5; � = 1 June 9, 2019 49 / 49
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