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Small Gain Theorem

Small Gain Theorem

Theorem 1 (Small Gain Theorem)

Assume that M(s), A(s) are stable. The closed-loop system is robustly
stable iff one of the following conditions is true.

o When ||All, <1, there holds ||[M(s)||, < 1.
o When ||All, <1, there holds ||[M(s)]|,, <1 .

Figure: Small Gain Theorem
]
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Small Gain Theorem

Small Gain Theorem: proof

Sufficiency:
under the given condition, the loop gain satisfies

IM(jw)A(w)| = IM(w)[|AGw)] < 1.

It is contained inside the unit disk and does not encircle (—1,0). So, CLS
is stable.
Necessity:

@ Basic idea: find an uncertainty in the given set which destabilizes CLS
if [M]lo = 1.
@ Due to ||M||,, > 1 and the continuity of frequency response, there
must be a frequency wyp € [0, 0c0] at which |[M(jwg)| =1 holds, i.e.
M(jwo) =€ or — e, 6 € [0,7).

@ In the sequel, A is constructed only for the case of positive sign.
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Small Gain Theorem

Small Gain Theorem: proof

o If we can find an uncertainty A(s) satisfying
A(jwo) = e, ||All, <1,
@ Then

1 — M(jwo)A(jwo) =1 —e?e ¥ =0

holds and CLS has an unstable pole jwy.
@ Next, we construct stable rational uncertainties satisfying this
condition case by case.
© M(jwy) =1 when § =0. Then, A(s) =1.
Q@ When 0 € (0,7),

a—s Wo
A(s)=——, a=— >0
() a+ts tan@/2
satisfies A(jwo) = e and ||Al|, = 1 simultaneously.

© Uncertainties constructed are all stable and rational, and they belong
to the given uncertainty set since their H., norms are 1.
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Small Gain Theorem

Remarks

o

o

Physically, small gain theorem corresponds to the fact that the
external input is attenuated every time it circulates in the closed loop.

Small gain theorem is not only sufficient, but also necessary. That is,
for a norm-bounded dynamic uncertainty set, small gain theorem is
not conservative.

However, we should understand this necessity correctly. It is true only
when the phase of uncertainty can change freely, which seldom
happens in practice.

For real-world systems small gain theorem is simply sufficient, not
necessary!
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Robust Stability Criteria

@ Sensitivity S and Complementary sensitivity T:

S(s)=(I+PK)™, T(s)=(+PK)"'PK. (1)

Table: Robust Stability Criteria
W(s) and A(s) are stable, ||A], <1

Plant set P Robust stability criterion

(I + AW)P Nominal stability and |[WT]|| <1
(I+ AW) 1P | Nominal stability and [[WS||_ <1
P+ AW Nominal stability and [|[WKS]| <1
P(I + AWP)~! | Nominal stability and ||WSP||, < 1
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Robust Stability Criteria

Proof: feedback uncertainty case

@ When A(s) =0, the system must be nominally stable.
© Denote the input and output of A as z, w resp.
© Compute the transfer matrix from w to z

z=Mw, M=—-WSP.

Q@ Transform CLS to the left figure.
© By small gain theorem the robust stability condition is

1> Ml = [[-WSP]||, = [[WSP| -
z
N A
w L8]
il
K P - w z
LM |
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Equivalence between H o, Performance and Robust Stability

Bridge over performance and robust stability

Example 1: Robust stability about additive uncertainty (Figure (a),
1Al < 1)

Robust stability < (P, K) is internal stable and ||WKS|| <1

< Suppress the influence of disturbance w on input v (Figure(b))

z w
Z w
wi{z] N
p | [ p |
— K 1P =0 | K P 0

(b) Equivalent disturbance

(a) Robust stability problem attenuation problem
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Equivalence between H o, Performance and Robust Stability

Bridge over performance and robust stability

Example 2: Sensitivity reduction:

(P, K) is stable and ||WS]| <1 &

Robustly stabilize plant set {P = Al <1}

1+ AW’
gy

.

@ An H., performance problem is equivalent to a robust stability
problem with a virtual uncertainty A inserted between the input and
output of the closed-loop transfer function.
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Equivalence between H o, Performance and Robust Stability

Bridge over performance and robust stability

Theorem 2

(1) The CLS containing stable uncertainty ||A||., < 1 is stable iff the
nominal CLS is stable and || F¢(G, K)| ., < 1.

(2) The nominal CLS is stable and || F;(G, K)||,, <1 iff the CLS formed
by inserting an arbitrary virtual stable uncertainty ||Al|,, < 1 between
its input w and output w is stable.

A

z | 7 w
G

y u
K
L=

Figure: Equivalence between nominal performance and robust stability
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Analysis of Robust Performance

Analysis of Robust Performance

Example 1:
O plant set

P=pP+aw, |A|, <1

@ Spec: reduce the tracking error

1
W,
H T+ (P+ AWK

H <L (2)
oo
© Nominal system must satisfy this spec first
[WsS|lp < 1.
© Robust stability

IWKS|| < 1.
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Analysis of Robust Performance

Analysis of Robust Performance

© Examine if nominal performance and robust stability can guarantee
the robust performance.

W. L X L
S1+PK 1+ AWKS

= WsS(L+ AWKS)™.

Q@ A (J|]All,, £ 1) can take any complex value. So even if
|WKS||, <1, such a frequency still can be found at which
|1 + AWKS| < 1 holds.

© For this uncertainty A, the tracking performance deteriorates
significantly.

@ No matter how good the nominal performance (||WsS||,,) and robust
stability are, the robust performance cannot be ensured!
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Analysis of Robust Performance

W2

(a) Original problem (b) Equivalent stability problem

EIJV
+
u P -+

(d) Conversion to disturbance
control problem

w1 AS Z1

(c) Separation of uncertainty

PR November 16,2016 14 / 18



LUEVSERS BN TS DN Sufficient Condition for Robust Performance

Sufficient Condition for Robust Performance

Example 2: Derive a condition for the robust tracking.
© Robust performance problem is equivalent to the robust stability
problem when a virtual uncertainty As (||Asl|,, < 1) (Figure (b))
Q After transforming Figure (b) into Figure (c), the problem is reduced
to the robust stability problem of a CLS with a dilated uncertainty:

wi || As 7
wy | A z |’
© Since H{ As A }H <1, by small gain theorem a sufficient condition
for robust stability is that, transfer matrix M(s) from [w; ws]” to

[z1 2] " satisfies

[ WsS —WsS

IM||l, <1, M(s) = [ WKS —WKS ] :

© This is just a sufficient condition.
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Analysis of Robust Performance Introduction of Scaling

Introduction of Scaling

Example 2: continued

© Introduction of minimum phase transfer function does not change the
stability of CLS.

@ Equivalent block diagram transformations: (a)—(b)—(c)
© Scaled norm condition for robust performance

jo ol <1, o= P ] e

Q A suitable D may make HDflMDHoo less than |[M||, thus lower the
conservatism.
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Analysis of Robust Performance Introduction of Scaling

(b) Phase two

(c) Phase three
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Stability Radius of Norm-Bounded Parametric Systems

Theorem 3 (Qiu’s Theorem)

The uncertain system with real uncertainty A € RP*9 |s robustly stable iff
the parameter uncertainty matrix A satisfies

RGeS Ty

1 S » <[
1A, ~ 0P aeoa 2\ | 2S(MGw))  R(M(jw))

o2(X) denotes the second largest singular value of matrix X.

= o]

Stability radius problem of parametric systems
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