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H1 Norm of Transfer Funtion De�nitionH1 Norm of Transfer Funtion
1 Transfer matrix G (s) = � A BC D � (1)2 H1 norm: maximal amplitude of freq. responsekGk1 := max! jG (j!)j SISO (2)kGk1 := max! �max(G (j!)) MIMO (3)
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H1 Norm of Transfer Funtion Relation with Input and OutputRelation with Input and Output: 1kGk1 = supkuk2 6=0 kyk2kuk2 : (4)1 kyk2=kuk2: ratio of input and output energies. Its supremum for allenergy-bounded input u(t) is the H1 norm. kGk1.2 To lower the output response y(t) to a energy-bounded disturbaneu(t), we need kGk1 ! 0:3 To make the input-output ratio less than a given value  >, it issuÆient to guarantee kGk1 < : Deember 13, 2016 4 / 30



H1 Norm of Transfer Funtion Relation with Input and OutputRelation with Input and Output: 21 Instead of energy bounded, a disturbane is persistent whose energy isunbounded. New viewpoint needed.2 SISO system: maximum amplitude of system's frequeny response tounit impulse input kGk1 = sup! jG (j!)j3 MIMO systemkGk1 = supu2Cmkuk�1 kGuk1 ; kGuk1 = sup! kG (j!)uk2 : (5)Complex spae C m is a spae of impulse vetor signals ontainingtime-delay. So, kGk1 is the maximum amplitude of all the frequenyresponses w.r.t. unit impulse vetors whose elements are imposed atarbitrary instants. Deember 13, 2016 5 / 30



H1 Norm of Transfer Funtion Weighting Funtion vs Dynamis of DisturbaneWeighting Funtion vs Disturbane1 Disturbane has dynamis W (s). Then ŷ(s) = G (s)W (s).2 Suppression of the disturbane responsekŷk1 � kGW k1 <  (6)3 Even when only an upper bound jW (j!)j is known,jd̂(j!)j � jW (j!)j 8 !;disturbane is still suppressed if kGW k1 is minimized beauseGd̂1 � kGW k1 :
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H1 Control ProblemAn exampleExample 1Ref traking: plant P(s) = 1=s, ontroller K (s) = k, ref. inputr(t) = 1(t). Seek a gain k s.t. the traking error e(t) satis�es theperformane spei�ation sup! jê(j!)j � 0:1.(Solution) r(t) is the unit impulse response of W (s) = 1=s. Hene, e(t) beomesthe unit impulse response of the weighted transfer funtion WS . Therefore,sup! jê(j!)j = kWSk1 in whihS(s) = 11 + PK = ss + kk > 0 is neessary for the internal stability, Then,kWSk1 =  1s + k 1 = 1k � 0:1 ) k � 10: 5Deember 13, 2016 7 / 30



H1 Control ProblemH1 ontrol problem1 For any given  > 0, design a ontroller satisfying kHzwk1 < .2 (A1): (A;B2) is stabilizable and (C2;A) is detetable.G (s) = � A BC D � = 24 A B1 B2C1 D11 D12C2 D21 0 35 (7)GKzy wu� ��-Figure: Generalized feedbak system Deember 13, 2016 8 / 30



LMI Solution 1: Variable EliminationSolution 1: Variable EliminationNY = [C2 D21℄?; NX = [BT2 DT12℄?:Theorem 1Assume (A1). The H1 problem kHzwk1 <  has a solution i�9X > 0;Y > 0 satisfying� NTX 00 Inw �24 AX + XAT XCT1 B1C1X �I D11BT1 DT11 �I 35� NX 00 Inw � < 0 (8)� NTY 00 Inz �24 YA+ ATY YB1 CT1BT1 Y �I DT11C1 D11 �I 35� NY 00 Inz � < 0 (9)� X II Y � � 0; rank � X II Y � � n + nK : (10)Deember 13, 2016 9 / 30



LMI Solution 1: Variable Elimination(Proof) CLS: Hzw (s) = (A ;B ;C ;D).Aording to the bounded-real lemma, H1 problem is solvable i� 9P > 0satisfying 24 AT P + PA PB CTBT P �I DTC D �I 35 < 0: (11)OR equivalently Q + ETKF + FTKTE < 0 (12)� Q ETF � = 26664 ATP + PA PB1 CT1 PB2BT1 P �I DT11 0C 1 D11 �I D12C 2 D21 0 37775 ; K = � DK CKBK AK � :
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LMI Solution 1: Variable Elimination
Owing to Theorem 3.1, (12) is equivalent toET?QE? < 0; FT?QF? < 0: (13)Deomposition of PP = � Y �� � � ; P�1 = � X �� � � :Then, onditions (8), (9) are derived from (13). Condition (10) isobtained from the positive de�niteness of matrix P (Lemma 3.1). r
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LMI Solution 2: Variable ChangeSolution 2: Variable ChangeFatorization of matrix P > 0P�1 = �2; �1 = � X IMT 0 � ; �2 = � I Y0 NT � :Variable hangeA = NAKMT + NBKC2X + YB2CKMT + Y (A+ B2DKC2)XB = NBK + YB2DK ; C = CKMT + DKC2X ; D = DK (14)Notation He(A) = A+ AT
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LMI Solution 2: Variable ChangeSolution 2: Variable ChangeSolvability onditionHe2664 AX + B2C A+ B2DC2 B1 + B2DD21 0A YA+ BC2 YB1 + BD21 00 0 �2 I 0C1X +D12C C1 + D12DC2 D11 + D12DD21 �2 I 3775 < 0 (15)� X II Y � > 0: (16)Controller K (s) = (AK ;BK ;CK ;DK )DK = D ; CK = (C � DKC2X )(M�1)T ; BK = N�1(B � YB2DK )AK = N�1(A �NBKC2X � YB2CKMT � Y (A+ B2DKC2)X )(M�1)T :(17)Deember 13, 2016 13 / 30



Seletion of Generalized PlantSeletion of Generalized Plant
1 Consideration of Disturbane ControlSingle out the major disturbane and put its output response into theperformane output.Examine the frequeny response of disturbane and use it theweighting funtion.2 Consideration of Model Unertainty3 Consideration of Input ConstraintAlways put the input into the performane output
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Seletion of Weighting FuntionSeletion of Weighting Funtion
1 Weighting Funtion of Dynami UnertaintyUse a tight but low-order upper bound2 Weighting Funtion of InputHigh-pass transfer funtionLow gain within the ontrol bandwidthHigh gain beyond the ontrol bandwidth3 Weighting Funtion of PerformaneUse models of ref. input and disturbane, usually low-pass;Raise the gain as high as possible
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Case Study: H1 ontrol of HDDIEEJ HDD benhmark1 Physial model of HDD~P(s) = Kps2 + A1s2 + 2�1!1s + !21 + A1s2 + 2�1!2s + !22 + � � � (18)2 Obtained via �nite element method and modal analysis3 High order resonant modes vary with manufaturing error, hundredsof thousands of HDDs ontrolled by the same ontroller.4 Control design arried out based on rigid body model P(s) = Kp=s2
Deember 13, 2016 16 / 30



Case Study: H1 ontrol of HDDIEEJ HDD benhmarki fi (Hz) �i Ai1 4100 (�15%) 0.02 -1.02 8200 (�15%) 0.02 1.03 12300 (�10%) 0.02 -1.04 16400 (�10%) 0.02 1.05 3000 (�5%) 0.005 0.01 (�200% � 0%)6 5000 (�5%) 0.001 0.03 (�200% � 0%)Kp 3:744 � 109
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Case Study: H1 ontrol of HDDIEEJ HDD benhmark1 High freq resonant modes modeled as a multipliative unertaintyP(s) = P0(1 + �W ); P0(s) = ks2 ; k�k1 � 1:2 Draw the relative error ���1� P(j!)P0(j!) ��� in a Bode plot.3 Determine a minimum phase weighting funtion s.t. the gain of itsfreq response overs the relative errors.
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Case Study: H1 ontrol of HDDCase Study: H1 ontrol of HDD1 Head positioning in fae of wind disturbane2 Wind disturbane: step signal3 w1 and z1: input and output used to penalize the disturbaneresponse4 w2 and z2: output and input of multipliative unertainty5 z3: performane output used to penalize the ontrol input u
u W4 - -i-66

w1z3q ? 66q i -? 66w2 z1q
z2 W1 yP(s) W2W3? Deember 13, 2016 19 / 30



Case Study: H1 ontrol of HDDCase Study: H1 ontrol of HDD1 W1: dynamis of the disturbane2 W2: gain of the multipliative unertainty3 W3: parameter mainly used to tune the response speed4 W4: weighting funtion used to adjust the ontrol input
u W4 - -i-66

w1z3q ? 66q i -? 66w2 z1q
z2 W1 yP(s) W2W3?
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Case Study: H1 ontrol of HDDWeighting funtions1 Gain of unertainty weight W2 rises sharply around ! = 2� 104rad/s, no e�etive ontrol possible above it.2 Disturbane weight W1 and input weight W4 should interset in theviinity of this frequeny.3 Wind disturbane model W1 is an integrator, its gain should be ashigh as possible.
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Case Study: H1 ontrol of HDDWeighting funtionsW1(s) = s + 8:1 � 102s + 1:0� 10�6 � 4:1� 10�4W2(s) = �s2 + 1:4 � 104s + 1:1� 108s2 + 1:9 � 104s + 7:6� 108�2 � 33W3 = 1:0� 10�3; W4(s) = s + 2:0 � 103s + 4:0 � 105 � 1:4� 102:
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Case Study: H1 ontrol of HDDH1 ontroller1 Noth at the peak freq. of resonant modes, obtained automatially.2 Contains an integrator3 Phase lead
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Case Study: H1 ontrol of HDDOutput Response1 No notieable di�erene in outputs, almost the same output responsehave been ahieved.
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(b) Atual output responseFigure: Step disturbane response (output)Deember 13, 2016 24 / 30



Case Study: H1 ontrol of HDDInput Response1 Input of the atual system is muh more osillatory.
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(b) Atual output responseFigure: Step disturbane response (input) Deember 13, 2016 25 / 30



Saled H1 ControlSaled H1 Control1 H1 ontrol problems with a onstant saling matrix L > 0kL1=2HzwL�1=2k1 < : (19)2 CLS Hzw (s) = (A ;B ;C ;D) satis�es (19) i� 9P > 0; L > 0satisfying (bounded-real lemma)24 AT P + PA PB CTBT P �L DTC D �L�1 35 < 0: (20)
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Saled H1 ControlSolutionTheorem 2Assume (A1). The saled H1 problem has a solution i� there existmatries X > 0;Y > 0 and L; J satisfying� NTX 00 Inw �24 AX + XAT XCT1 B1C1X �J D11BT1 DT11 �L 35� NX 00 Inw � < 0 (21)� NTY 00 Inz �24 YA+ ATY YB1 CT1BT1 Y �L DT11C1 D11 �J 35� NY 00 Inz � < 0 (22)� X II Y � � 0 (23)LJ = I : (24)Deember 13, 2016 27 / 30



Saled H1 ControlK-L iteration mathod1 Condition LJ = I is not onvex, annot be solved by using LMIapproah diretly.2 Need to use the K-L iteration method.Step 1 Let L = I .Step 2 Compute a ontroller K (s) suh that kL1=2HzwL�1=2k1 isminimized and denote the minimal norm by K .Step 3 Fixing the ontroller K (s), �nd saling matrix L > 0 suhthat kL1=2HzwL�1=2k1 is minimized and denote the minimalnorm by L.Step 4 If K � L is less than a spei�ed value, end the design andoutput the ontroller K (s) obtained in Step 2; Otherwise,return to Step 2. Deember 13, 2016 28 / 30



Saled H1 ControlK-L iteration mathod1 L is known in Step 2, so we an ompute K and P > 0 by solving aGEVP: min  subjet to (21), (22), (23)2 Controller K (s) is obtained by solving LMIQ + ETKF + FTKTE < 0 (25)� Q ETF � = 26664 ATP + PA PB1 CT1 PB2BT1 P �KL DT11 0C 1 D11 �KJ D12C 2 D21 0 37775 : (26)3 Optimization problem in Step 3 an be solved by solving the GEVP:min  subjet to24 AT P + PA PB CT LBT P �L DT LLC LD �L 35 < 0; P > 0; L > 0 (27)Deember 13, 2016 29 / 30



Saled H1 ControlProjetRepeat the design of head positioning ontrol of HDD using thesaled H1 ontrol method.Requirements1 Tune the weighting funtions of performane output so as to ahievethe best possible solution.2 Show the Bode plots of ontroller, open-loop systems w.r.t. thenominal model and true plants at all verties of parameter vetors.3 Show the Bode plots of losed-loop systems from wind disturbane tohead position w.r.t. the nominal model and true plants at all vertiesof parameter vetors.4 Show the time response of head position and input w.r.t. the nominalmodel and true plants at all verties of parameter vetors.Deember 13, 2016 30 / 30
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