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Introdution of � Robust Problems with Multiple UnertaintiesExample 1: When unertainties put together, we getŷ = (�2 + P2)P(�1 + P1)û = P2PP1û +�û) � = �2P�1 +�2PP1 + P2P�1: (1)�1P1-- - g?- - P2�2- ?- g�qqq ?6
KP2PP1 - g?�--q KP� yu

yuFigure: Merging two unertainties into one Deember 13, 2016 3 / 26



Introdution of � Robust Problems with Multiple Unertainties
� = �2P�1 +�2PP1 + P2P�1: (2)1 Need to estimate an upper bound for � based on those of �1;�2.2 This bound is often enlarged. Further, in the estimated sope of �,there are many other unertainties not belonging to (2). Plant set isfar greater than the atual plant set.3 Control design will often be very onservative. Most typially, theontroller gain has to be lowered in the low/middle frequeny bands,making it impossible to realize good disturbane attenuation and fastresponse.
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Introdution of � Robust Problems with Multiple Unertainties1 Via transformation of blok diagram, these two unertainties an beaggregated as a diagonal matrix � �1 00 �2 � with� ẑ1̂z2 � = M � ŵ1ŵ2 � ; (3)M = � KP2(I � PP1KP2)�1P (I � KP2PP1)�1K(I � PP1KP2)�1P PP1(I � KP2PP1)�1K � : (4)2 This transformation does not hange the unertainties. Therefore, itis possible to ahieve a less onservative ontrol design.
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Introdution of � Robust Problems with Multiple Unertaintiesz1 y�1P1- - i?- - �2- - iK qqq ?6
?- w1u w2
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Introdution of � Robust Problems with Multiple UnertaintiesStrutured Unertainty1 In general, when there are r unertainties �i (i = 1; : : : ; r), the CLSan always be rewritten as �1 . . . �r �- M2 Blok-diagonal � is alled strutured unertainty.3 Suh transformation does not hange the stability of system.Deember 13, 2016 7 / 26



Introdution of � Robust Problems with Multiple UnertaintiesStability margin1 Roots of det[I �M(s)�(s)℄ = 0 are the poles of losed-loop system.2 � = 0: CLS must be stable, det[I �M(s)�℄ = 1 6= 0.3 Next, we �x the dynamis of unertainty � and inrease its gaingradually until CLS beomes unstable.4 Sine CLS poles vary ontinuously with the unertainty, they mustross the imaginary axis before getting unstable.�1 . . . �r �- M x

x
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Introdution of � Robust Problems with Multiple Unertainties1 Unertainty destabilizing CLS for the �rst time must be the one withthe smallest norm in all �'s satisfyingdet(I �M(j!)�(j!)) = 0; 9! 2 [0;1): (5)2 Its norm is alled stability margin.3 Stability margin depends on the diagonal struture of � and thematrix M.4 Reiproal of stability margin is exatly the strutured singular value��(M(j!)). �1 . . . �r �- M Deember 13, 2016 9 / 26



Introdution of � Robust Performane ProblemRobust Performane Problem1 A problem of robust H1 performane an be equivalently onvertedinto a robust stabilization problem of systems with struturedunertainty.2 This is an even more important motivation for onsidering the robuststabilization of systems with strutured unertainty.
-e6� w2z2 -e++W- �WS - ?6r e p pp- y-PK u-w1 (a) Original problem -e6� w2z2 -e++-�S W- �WS - ?�w1 z1 p pp yPu-6 K(b) Equivalent stability problemDeember 13, 2016 10 / 26



De�nition of � and Its ImpliationDe�nition of �1 At a frequeny, a transfer matrix beomes a omplex matrix.2 Fix the frequeny and onsider � � Cm�n and M 2 C n�m .� = f� j � = diag(Æ1Ir1 ; : : : ; ÆS IrS ;�1; : : : ;�F )g (6)Æi 2 C ; �j 2 C mj�njDe�nition 1Given matrix M 2 C n�n , the strutured singular value �� (M) is de�ned as�� (M) = 1minf�max(�) j � 2 �; det(I �M�) = 0g : (7)�� (M) = 0 when there is no � 2 � satisfying det(I �M�) = 0.Deember 13, 2016 11 / 26



De�nition of � and Its ImpliationImpliation of �De�nition 2Given M 2 C n�n , the strutured singular value �� (M) is de�ned as�� (M) = 1minf�max(�) j � 2 �; det(I �M�) = 0g : (8)�� (M) = 0 when there is no � 2 � satisfying det(I �M�) = 0.1 �� (M) is the reiproal of the gain of the smallest unertaintyamong all � 2 � satisfying det(I �M�) = 0.2 Therefore, det(I �M�) 6= 0 holds for all � 2 � satisfying�max(�) < 1=�� (M).3 Conversely, as long as there is one �1 2 � suh that�max(�1) � 1=�� (M), there must be a � 2 � satisfyingdet(I �M�) = 0. Deember 13, 2016 12 / 26



De�nition of � and Its ImpliationRobust Stability CriterionTheorem 1Assume that M(s) and the strutured unertainty �(s) 2 � are stable,k�k1 < . Then, the CLS is robustly stable i�sup! ��(M(j!)) � 1 : (9)�1 . . . �r �- M Deember 13, 2016 13 / 26



Bounds of �� (M)Bounds of �� (M)1 Single salar blok unertainty � = fÆI j Æ 2 C g�� (M) = �(M) (10)2 Full blok unertainty � = C n�n�� (M) = �max(M) (11)3 Inlusion relation of unertainty sets:fÆIn j Æ 2 C g � � � C n�n (12)4 When an unertainty is restrited to its subset, a greater unertaintymagnitude is allowed s.t. the orresponding � gets smaller. Therefore,�(M) � �� (M) � �max(M): (13)Deember 13, 2016 14 / 26



Bounds of �� (M)Improved Bounds of �� (M)Saling matriesD = �D j D = diag(D1; : : : ;DS ; d1Im1 ; : : : ; dF�1ImF�1 ImF )	 (14)Q = fQ 2� j Q�Q = Ing: (15)
M � �M- �-�6�- 6??� D- - -D�1

-�D D�1 Q� �Q M- -� �M �� Deember 13, 2016 15 / 26



Bounds of �� (M)Theorem 2For any Q 2 Q and D 2 D , there hold�� (M) = ��(DMD�1) = ��(QM) = ��(MQ): (16)(Proof) First of all, we obtain �� (M) = ��(DMD�1) fromdet(I �M�) = det(I �MD�1D�) = det(I �MD�1�D) = det(I � DMD�1�).Seondly, �� (M) = ��(MQ) holds beausedet(I �M�) = 0, det(I �MQQ��) = 0, Q�� 2 � and�max(Q��) = �max(�). Similarly, we an prove that �� (M) = ��(QM). �1 Improved bounds for �� (M)maxQ2Q �(QM) � �� (M) � infD2D �max(DMD�1): (17)2 We may approah �� (M) by solving optimization problems aboutthe spetral radius and the largest singular value. Deember 13, 2016 16 / 26



Robust H1 Performane ConditionRobust H1 Performane Condition
wz �� �-M(s)�(a) Robust performane problem �-- ��f�M(s)(b) Equivalent robust stabilityproblemTheorem 3Suppose that the unertainty �(s) 2 � is stable and satis�es k�k1 < 1.CLS satis�es kFu (M;�)k1 � 1 for all unertainties i�sup!2R��P (M(j!)) � 1: (18)Deember 13, 2016 17 / 26



D-K Iteration DesignD-K Iteration Design1 Improved bounds of �maxQ2Q �(QM) � �� (M) � infD2D �max(DMD�1) (19)2 Maximization the lower bound is not onvex.3 Upper bound is the largest singular value and its minimizationproblem is onvex.4 Convexity of minimization of the largest singular valueMinimizing �max(DMD�1) is equivalent to minimizing  > 0 satisfying(DMD�1)�(DMD�1) � 2I , M�XM � 2X ; X = D�D: (20)Minimizing  subjet to this LMI is a GEVP and onvex:min subjet to (20)D is omputed by using the singular value deomposition method.Deember 13, 2016 18 / 26



D-K Iteration Design Proedure of D-K Iteration DesignProedure of D-K Iteration Design1 CLS transfer matrix M M(s) = F`(G ;K ): (21)2 Taking the maximum of �max(DMD�1) w.r.t. all frequenies, thelargest singular value �max beomes the H1 norm.sup! �� (M) � infD2D DMD�11 (22)3 Saling matrix D and ontroller K (s) need be solved alternately.4 Idea: when the ontroller K (s) is known, M(s) is also �xed. So, thesaling matrix D(s) an be alulated pointwise.5 When the saling matrix D(s) is given, the ontroller K (s) an beobtained by solving an H1 ontrol problem.6 After eah iteration the saling funtion is added to the generalizedplant, whih leads to a very high order of the �nal ontroller. Modelredution is neessary before the ontroller is implemented.Deember 13, 2016 19 / 26



D-K Iteration Design Proedure of D-K Iteration DesignProedure of D-K Iteration Design
GK D�1D �- �� ��

Figure: � synthesis using saling
Deember 13, 2016 20 / 26



Case Study: H1 ontrol of HDDCase Study: H1 ontrol of HDD1 Head positioning in fae of wind disturbane2 Wind disturbane: step signal3 w1 and z1: input and output used to penalize the disturbaneresponse4 w2 and z2: output and input of multipliative unertainty5 z3: performane output used to penalize the ontrol input u
u W4 - -i-66

w1z3q ? 66q i -? 66w2 z1q
z2 W1 yP(s) W2W3? Deember 13, 2016 21 / 26



Case Study: H1 ontrol of HDDCase Study: H1 ontrol of HDD1 W1: dynamis of the disturbane2 W2: gain of the multipliative unertainty3 W3: parameter mainly used to tune the response speed4 W4: weighting funtion used to adjust the ontrol input
u W4 - -i-66

w1z3q ? 66q i -? 66w2 z1q
z2 W1 yP(s) W2W3?
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Case Study: H1 ontrol of HDDGain of performane weight W1(s) is 60% higher.W1(s) = 1:6� s + 1:1 � 8:1 � 102s + 1:0 � 10�6 � 4:1 � 10�4Transitions of � and H1 normNumber of D-K iterations 1 2� 1.378 0.998H1 norm 1.432 0.999
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Case Study: H1 ontrol of HDD� ontrollerHigher low frequeny gain
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Comparison of � and H1 ontrollers (solid: �, dashed: H1)Deember 13, 2016 24 / 26



Case Study: H1 ontrol of HDDOutput ResponseSmaller amplitude, faster onvergene.No muh di�erene in the nominal and robust responses.
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(a) Nominal output response 0 0.005 0.01 0.015 0.02
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(b) Atual output responseFigure: Step disturbane response (solid: �, dashed: H1)Deember 13, 2016 25 / 26



Case Study: H1 ontrol of HDDInput ResponseRoughly the same amplitudeFaster amplitude hange in 0.5-1.0 se.
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(a) Nominal input response 0 1 2 3 4 5
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(b) Atual input responseFigure: Step disturbane response (solid: �, dashed: H1)Deember 13, 2016 26 / 26
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