Chapter 8

Relation Between Time Domain and
Frequency Domain Properties
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Introduction

@ Physical system and performance spec are in time domain

@ Frequency components of physical variable is better described in freq
domain

@ Signal amplification property of system is better described in freq
domain

@ NEED a bridge across the time domain and freq domain
@ Signal: Parseval's theoreom

@ System: KYP lemma
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Parseval’'s Theorem

Parseval’s Theorem

Theorem 1 (Parseval’s theorem)

Signal vectors f(t), f(t), f2(t) € R" have Fourier transforms
Fjw), fL(jw), fa(jw) resp.

© Inner product in time domain is equal to that in freq domain

TR = o [ FGe)hl)de (1)
J -/

© 2-norm in time domain is equal to that in freq domain:

iR de= o [ )| o 2

R 2
I ||1£(¢)||? dt represents the energy of signal f(t). In this sense, Hf(jw)H

can be regarded as the energy density at w, called power spectrum.
]

v
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Example

Exponentially convergent signal

f(t)=et Vt>0 Fliw) =
(t)=e >0 & f(jw) il

(e.@) oo 1
/ (e t)dt = / e 2tdt = .
0 0 2

Left side of (2)

Right side of (2)

1 [~ . L[>~ 1 1 00 1
— If(jw)Pdw = — ———dw = ~— arctanw ==
2 ) 2r J o wc+1 27 —00

Obviously, both sides are equal.
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Parseval’'s Theorem

Example

In this example, the power spectrum is |f(jw)|? = 1/(w? +1). It is clear
that the energy mainly concentrates in the low frequency band.
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Figure: Power spectrum
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Parseval’'s Theorem

System implication

© In control design, it is very important to fully grasp the power
spectrum of a signal.

© When the signal is a disturbance, the closed-loop system gain needs
to be rolled-off in the frequency band where the power spectrum of
disturbance is big in order to attenuate its influence on the system
output.

@ In this example, this band is roughly 0 < w < 6[rad/s].

©Q Finally, a power spectrum is the square of the gain of a signal's
frequency response. So we can capture the characteristic of a signal
from its gain of frequency response.
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KYP Lemma

KYP Lemma

Theorem 2 (KYP lemma)

Given matrices A € R™" B e R™™ M = MT e R(rtmx(ntm) = Assyme

that A has no eigenvalues on the imaginary axis and (A, B) is controllable.
Then the following statements are equivalent.

© For all w including the infinity, there holds

. o -1 k . o -1
[(/wl IA) B]M[(Jw/ IA) B]SO‘ 3)
Q@ 3P = PT € R™" satisfying
ATP+PA PB
M+[ BTp 0 ]go. (4)

When both are strict inequalities, the equivalence is still true and (A, B)
needs not be controllable.
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Gz 0=l b Czaer o) Lo
Application in bounded real lemma

© Gain property about a stable transfer matrix G(s):

G*(jw)G(jw) < 7?1 Yw € [0, o0]. (5)

@ Equivalent to the H, norm condition ||G|,, < v

© Equivalent expression
G(s)=C(sl —A) B+ D=
(wl —A) B [ CTC
/ DTC

e 55

[CD][ ]:>
ol )

e[
(6)
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KYP Lemma Application in bounded real Lemma

Application in bounded real Lemma

@ Application of KYP lemma: 3P = PT satisfying

c’c C'D ATP+PA PB <0 @)
DTC DTD -~ BTP 0 '
Lemma 1 (Bounded real lemma)
Given G(s) = (A, B, C, D), the following statements are equivalent:
O A is stable and ||Gl|s < 7;
© There exists a positive definite matrix P satisfying
ATP+PA PB CT
BT —yI DT | <. (8)
C D —~l
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KYP Lemma Application in bounded real Lemma

Application in bounded real Lemma

(Proof) Dividing both sides of inequality (7) with v and renaming P/~ as P, (7)
can be written as

ATP+PA PB cT -
BTP —7[]_{DT}'(_71)1'[C D]<o.

It follows from Schur's lemma that (8) is equivalent to (7). Finally, we need only
prove that the stability of A is equivalent to P > 0. Since the (1, 1) block of (8) is

PA+ATP <0,

the equivalence is immediate by Lyapunov’s stability theory. .
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KYP Lemma Application in bounded real Lemma

Example

J— a —
242542

G(s)

© Bode plot shows that its largest gain is a/2.
Q Hoo norm of G(s) is less than 1 (i.e. v =1) iff a < 2.
© When a = 1.9, LMI (8) has a positive definite solution

3.8024 1.5253

P=1 15053 1.8265

© However, when a > 2, no positive definite solution exists for (8).

© This implies that we can use the bounded real lemma to calculate the
Hoo norm of transfer matrices.

Q Calculation of Ho, norm: Reduce v gradually until there is no
positive definite solutions for (8). The last 7y is the H, norm.
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KYP Lemma Time-domain interpretation of bounded real lemma

Time-domain interpretation of bounded real lemma

G(s): x=Ax+ Bu, y = Cx+ Du.

Quadratic function
V(x) =x"Px >0 (9)

Multiplying the inequality (7) by { . ] we get
0>xT(ATP+ PAx +x"TPBu+u"BTPx +xTCT Cx
+x"CTDu+u"DTCx+uT(DTD - I)u
= xT P(Ax + Bu) + (Ax + Bu) " Px + (Cx + Du) " (Cx + Du) —u"u
=x"Px+x"Px+yTy —u"u
Since V = x"Px + x" Px,
Vi) <uTu—yTy (10)
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KYP Lemma Time-domain interpretation of bounded real lemma

Time-domain interpretation of bounded real lemma

After integration, we have

V(x(t)) < V(x(0)) +/O [uT(T)u(r) =y T (r)y(r)ldr.  (11)

@ u'u, yTy are the input and output powers, their difference is the
power supplied to the system. After integration it becomes the energy
supplied to the system.

© V/(x) can be regard as a storage function of the system energy.

© This inequality implies that the variation of the energy stored in a
system is less than the energy supplied by the input.

© A bounded real system consumes a part of the energy supplied by the
input. So, it is called a dissipative system.
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KYP Lemma Application in positive real Lemma

Positive real function

G*'(jw)+ G(jw) >0 VYw € [0, o] (12)

© Numbers of input and output must be equal

@ Scalar case: left side equals twice of R[G(jw)], thus it is non-negative.

© System viewpoint: phase angle of a PR function is limited in
[—90°,90°]

© Relative degree does not exceed 1

>
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KYP Lemma Application in positive real Lemma

Positive real function

@ Example: it can be judged from the Nyquist diagram that transfer
function G(s) = 1/(s + 1) is positive real.

@ Some unstable systems may also have a frequency property like (12).
For example,

>0,

s—1 jw—l]_2+w2

) =175 = Mot = » 5| = 1

thus it satisfies the condition (12).
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KYP Lemma Application in positive real Lemma

Application in positive real Lemma

Equivalent conditions of inequality (12)

[ (! —IA)IB ] [ g: ] +[C D] [ Gt _IA)IB ] > 0.

[ Gwl=ATB] [0 CT (jwl — A)"1B <0
/ C D+DT /

By KYP lemma, when (A, B) is controllable there is a symmetric matrix P

satisfying

<0. (13)

ATP+PA PB]l [0 CT
BTP 0 C D+DT
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KYP Lemma Application in positive real Lemma

Application in positive real Lemma

Lemma 2 (Positive real lemma)

Let (A, B, C, D) be a minimal realization of G(s) and matrix A be stable.
Then the following statements are equivalent:

(1) G(s) satisfies the positive real condition (12);
(2) There is a matrix P > 0 satisfying inequality (13);
(3) There is a matrix P > 0 and a full row rank matrix [L W] satisfying

ATP+PA PB 0 c’ LT
BTP o]_[c D+DT]__[WT][L wl. (14)

November 12, 2016 18 / 28




KYP Lemma Application in positive real Lemma

Example

_ s+a
24 2s+2

G(s)

© Real part of its frequency response

%[G(jw)]:%[ atjw ]—23+(2_3)“2

2—w?+j2w|  (2—w?)? +4w?
@ For all w, the condition for R[G(jw)] > 0 is

2a>0, 2—-a>0=0<a<2
© LMI (13) has a positive definite solution

40 1.0
p= [ 10 1.0 ]

for a = 1, but no positive definite solution exists for a = 3. This
shows that this transfer function is not positive real when a= 3.

. November 12,2016 10 / 28



KYP Lemma Application in positive real Lemma

Strongly positive real function

© Strict inequality case
G*(jw) + G(jw) >0 Yw e [0, o] (15)

Q G(s) is called a strongly positive real matrix

© Strongly PR requires G*(joo) + G(joo) = DT + D > 0, i.e., relative
degree of G(s) must be 0.

Q G(s) = (s +a)/(s® + 25+ 2) is not strongly PR. But
G(s)=(s+a)/(s+1)issolongasa>0

jwta  atw+j(1-aw

G(jw) = —
Ue) =201 W + 1

© Strongly PR matrix must have full normal rank. That is, for almost
all s, G(s) should have full rank.
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KYP Lemma Application in positive real Lemma

Strongly positive real lemma

Lemma 3 (Strongly positive real lemma)

For transfer matrix G(s) = (A, B, C, D), the following statements are
equivalent:

(1) Matrix A is stable and G(s) is strongly positive real;
(2) There is a positive definite matrix P satisfying the strict inequality

ATP+PA PB 0 c’
BTP 0 ]_[C D+DT]<0' (16)
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KYP Lemma Application in positive real Lemma

Strictly positive real function

© Strictly proper G(s): G(joo) = D =0 at s = oo, not a strongly
positive real function.

@ But, there are many transfer matrixes satisfying G*(jw) + G(jw) > 0
at all finite frequencies except the infinity, i.e.

G*(jw) + G(jw) >0 VYw € [0, o0). (17)

© Such a stable transfer matrix is called a strictly positive real matrix
Q G(s) = (s +a)/(s? +2s + 2) is strictly positive real when 0 < a < 2.

. November 12,2016 22 / 28



L DD O (O
Modified strictly PR function

© What is the state space condition for a transfer function to be strictly
positive real?

© Unfortunately, this is still an open problem for the strictly positive real
matrix defined above.

© In view of this fact, Narendra-Taylor proposed to use the following
frequency domain characteristic to replace (17).

Definition 1 (Modified strictly positive realness)

G(s) is called strictly PR if there exists a constant € > 0 s.t. G(s —¢€) is
stable and satisfies the PR condition:

G*'(jw —€) + G(jw —€) > 0 Yw € [0, o0]. (18)
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KYP Lemma Application in positive real Lemma

Strictly positive real lemma

Lemma 4

Square transfer matrix G(s) = (A, B, C, D) is stable and has full normal
rank. Then the following statements are equivalent.

© There exists a constant € > 0 such that G(s — €) is positive real.
Q@ G*(jw) + G(jw) > 0 holds for any finite frequency w and

le w?’ det[G*(jw) + G(jw)] >0

p is the dimension of the kernel space of constant matrix D + DT, namely,
p = dim(Ker(D + DT)).

That is, the positive realness of G(s — €) guarantees that G(s) is strictly
positive real.
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KYP Lemma Application in positive real Lemma

Example

s+ a
G(s) = 5———.
(s) s2+4+2s5+42

© For sufficiently small € > 0, G(s — ¢) is still stable and

a—e+jw
1+ (1-€)2 —w?+/2(1 —e)w
_ (a—e)1+(1—-€e?]+(2-a—e€)w?
1+ (1—-€)?—-w??+4(1-¢€w?

R[G(jw—¢€)] =R

@ For all w including the infinity, R[G(jw — €)] > 0 iff
a—€e>0, 2—a—-e>0=>e<a<2—c

© There is a small gap between this bound and the strictly PR condition
0 < a < 2. This gap shrinks as € — 0.
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KYP Lemma Time-domain interpretation of positive real lemma

Time-domain interpretation of positive real lemma

G(s): x=Ax+ Bu, y=Cx+ Du
Storage function
V(x) =xTPx (19)
Multiplying inequality (13) with [x” u'], we have

0<xT(ATP+ PAx +x"PBu+u"BTPx —xTCTu—uT Cx
—u"(D" + D)u
= xT P(Ax + Bu) + (Ax + Bu) " Px — (Cx + Du)"u — uT (Cx + Du)
=x"Px+x"Px — yTu — uTy
= V(x)<2yTu.
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KYP Lemma Time-domain interpretation of positive real lemma

Time-domain interpretation of positive real lemma

Integration leads to

V(x()) < V(x(0)) + 2 /0 T (F)u(r)dr. (20)

@ yTuis the supply rate of the energy injected into the system.

© Energy stored in the system is less than the energy supplied by the
input.

© Such a system is called a passive system.
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KYP Lemma Time-domain interpretation of positive real lemma

Time-domain interpretation of positive real lemma

@ Why y T u is the supply rate of the energy injected into the system?

© Circuit consisting of an ideal voltage source and a load: u is the
voltage of power source, y is the current of load impedance Z. Their

product is apparently the power which the power source supplies to
the load impedance Z.

Figure: Energy supply rate for load impedance
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