Chapter 20
Gain-Scheduled Control
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Introduction

Introduction

© A nonlinear system can be described as an LPV model.

@ Time-varying coefficients of an LPV model are functions of some
states, they can be calculated when these states are measured.

Therefore, it is possible to change the controller gain according to the
variation of coefficients in the LPV model.

o
© Can control the LPV system more effectively than controllers with
fixed gains.

o

This method is called the gain-scheduled control
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General Structure

General Structure

@ LPV model
x = A(p(t))x + B(p(t))u (1)
y = C(p(t))x. (2)

@ Gain-scheduled controller

xk = Ak (p(t))xk + Bk (p(t))y (3)
u= Cx(p(t))xk + Dk (p(t))y- (4)

© Parameters of controller are changed together with that of the
time-varying parameter vector p(t).

© However, without specifying the structure about the parameter vector
p(t), concrete design method cannot be established.
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LFT Type Parametric Model

Ags(t)
e zZp wp
ZK — WK
s B
WK ZK
K(s)
(a) Structure (b) Equivalent transformation

Figure: LFT type gain-scheduled control system
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LFT Type Parametric Model

© Nominal transfer matrix G(s)

x = Ax + Biwp + Bod + Bsu (5)
zp = Cix + Dyywp + Diod + Dizu (6)
e = Gx + Doyywp + Dard + Dozu (7)
y = G3x + D3ywp + D3pd (8)

© d: disturbance, e: performance output, y: measured output and u:
control input

© Structure of uncertainty A(t)
A(t) = diag(d1(2)l, 02(t)lrs -5 dq(t)r,), 10i(E)] < 1. (9)
© Input-output relationship
wp = A(t)zp. (10)
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LFT Type Parametric Model Controller Structure

Controller Structure

O Introducing the same LFT structure about A(t) into the
gain-scheduled controller

xk = Ak xk + Bk1 wk + Bko y (11)
zx = Ck1 Xk + Dk11 wg + Dk1o y (12)
u= Cxoxi + Dkp1 wg + Dkoo y. (13)
© Gain-scheduling signal wg
WK = A(t)zK. (14)

© Signal wk relies on A(t), it changes the gain of the controller online.
Q@ Clearer relation

b(s) = [Ko2 + Kan A(/ — AKu) "' Ki2]9 (s). (15)
Kii(s): a block of the 2 x 2 block partition of K(s).
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LFT Type Parametric Model

Ags(t)
e zZp wp
ZK — WK
s B
WK ZK
K(s)
(a) Structure (b) Equivalent transformation

Figure: LFT type gain-scheduled control system
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LFT Type Parametric Model Controller Structure

Equivalent Transformation

O Figure (b): equivalent system
@ State equation of Ggs(s)

(%] [A,0 B B 0 By ][ x_
ZK 0 I0 0 0 | I 0 Wik
zp | | G& 0 Dy Dip 0 Dis wp (16)
e | | ©,0 Dn Dpn 0 Dy || d
WK 0 | /I 0 0 I0 0 ZK
Ly | GG 0 D33 D 0 0 [ | u |
© Dilated uncertainty
| A(Y)
Ags(t) = [ AG) ] . (17)

© Design methods: small gain based H, control, i synthesis, scaled
H oo control and so on.
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Gain-scheduled H o Control Design with Scaling
Gain-scheduled H ., Control Design with Scaling

© Performance spec

e
sup Lelo iy <1 (18)
1dll,20 141l

© Equivalence to the robust stability of the CLS when a virtual
uncertainty Ap(s) (||Ap|lo, < 1) is inserted between d and e

diag(Ags, Ap) = diag(A, A, Ap).

© Scaled small-gain condition

112 [T1/2
& | Fo(Ggs, K) | 78 | <1 (19)
© Structure of scaling matrix
| Lk A= AL
Lgs = [ 1T L ] ,  LiA=AlL;. (20)

. December 15,2016 10 / 48



Gain-scheduled H o Control Design with Scaling
Solvability Condition

Nx = [BJ DJ5 DL]i, Ny = [Cs D31 D3]y

[ YA+ ATY
NJ{ BlY

.l BJY
<0

[ AX + XAT
{ G X
CX

<=~ ©

o |

DT L3 0 G Du Din2
2 0 I C2 Dy Dx

D22

52 { 50 ] { Bl D] DJ
12

Do 0o Bf D], Dl

YB, YB, cl
-L3 0 + | D]

0o - D},
xcl  xcy B

—J3 0 + | Du

0 —1 Dy
Bl lz0 50 k>0
I
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LFT Type Parametric Model Computation of Controller

Computation of Controller

© Matrix factorization:
MMT =Y - X1 NTN=L3-J" (24)

© Lyapunov matrix P and scaling matrix L:

Y M /I N ) _
P:[MT I],L:[NT L3],La:dlag(L, In.), Ja= L1
(25)

© Solve the LMI
Q+ETKF+FTKTE<0 (26)

to get the coefficient matrix I of the controller.
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LFT Type Parametric Model Computation of Controller

Computation of Controller

[ Dk11 Dki2 Cki
K= | Dka1 Dk22 Cko (27)
| Bki  Bka Ak
[ A"P+PA PB, C, PB;
|:Q ET:|: BIP :La D;rl _0 (28)
F Cy D1 —J; D1
. G Dm0
[ A 0;0 B: 82:0 Bs 07
_9__0_|_0__9___0_+9__0___I_
- = = 0 00 O 0O [/ 0 0
?A 51 552 _ | G 0.0 Dy D 0 Dis 0 (29)
& B | |.© 0,0 Dn Dy 0 Dy 0
2 w2l 00/ 0 0
0o /'0 0 o
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Case study: Stabilization of a unicycle robot

Case study: Stabilization of a unicycle robot

Figure: Unicycle robot in
motion

10, side view

Potentionmeter 2 Gyro 1 \

0,

,E' ‘Angular Velocity
sensor

X
Wheel

Figure: Front and Side Views of Unicycle
Robot
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Gyro Actuator

© Mechanism of torque generation: when a fly-wheel rotating along z
axis at speed w; is rotated along y axis at speed w), a torque

T = —lww, (30)

is generated along x axis (left side).
©Q 7: called gyro-moment, contributes to lateral stabilization.

,

-I,0,0,
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Gyro Actuator

© When the pitch angle along x axis is 8, the torque 7oy in the lateral
direction about x axis is

Troll = —lzw; cos fw, = —R(0)w,, (31)

Q R(0) = l,w,cosB: coefficient of gyro-moment.

,

-I,0,0,
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LPV Model

© Coefficients of gyro-moments change significantly during the motion,
particularly when a lateral force disturbance is applied at the robot

R1(02, 03) =R COS(02 + 03), R2(02, 05) =R, COS(02 + (95), (32)
@ Since 0> =~ 0, we have

R1(92,93) =~ R1(93) = Rl + ARI51(t)

R2(92,95) ~ R2(95) =R+ AR252(t)
© LPV model
2
Ex = (A +) 5,-(t)A,-> x + Bu (33)
i=1
y = Cx. (34)
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Case study: Stabilization of a unicycle robot Control Design

Disturbance and Performance Output

© Disturbance: external force, force disturbance due to power cable,
unbalance due to assembly error.

© Modeled as 2 forces acting at ¢ (longitudinal) and 6; (lateral)
2
Ex = <A +Y° 5,-(t)A,-> x + Hd + Bu (35)
i=1

© Performance output
& =[¢,03,05,0,01,0,]T = Mx

Q Tracking error ¢ — r for the tracking of reference r(t) by ¢(t);
01,0, to keep the posture balance;
03,05 to keep them zeros in the the steady-state.
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Case study: Stabilization of a unicycle robot Control Design

Generalized Plant

y

Figure: Block diagram of generalized plant
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0l DT
Generalized Plant and Weights

E'A|E'L E'H E'B
w 0 0 0
M 0 0 0
0 0 D

W, = diag ( Wy, Wp,, Wy, W, W(,-z) (37)
W, = diag (W,,, W,,, W,,) (38)
Wg = diag (Wa,, Wa,) (39)
(40)
(41)

~—~ 0O

—~

Weer=[-W, 0 0 0 0]"
Wy=[000 W, 0]
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© Spec: for all A(t), ensure

suplel2 (42)
dp lldpll2

© Constant-scaled small gain condition
1571 Fi(Ggs, K)SJylloo < 1 (43)
J, = diag(/, I/7v), S permutable with diag(A, A, Ap).

© Working ranges presumed as |63],|0s| < Z; perturbation ranges:

Ag, = |Ri (cos%—1)| ~R x03, i=1,2

Q Weights
0.2s+4 0.3s+3
Wy=———"— W, = =—— W, =W, =0.01
¢ T s+00001° 5T 7% T gy0.0001 0 e
W, = M % 103’ W, = W, = M % 103
s+ 1000 s+ 2000

Wy, = 0.02, Wy, =0.03, W, =0.1, W, =0.001
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Case study: Stabilization of a unicycle robot Control Design

Designed Controller:

v = 0.961, order=16

© Significant variation observed in the controllers:
91 = 71, ((]5,93,95,92) — T2, ((]5,93,95,92) — 73.
© Controller from 61 to 71 shown in the figure

Phase [deg]

Time varying controller dth1>taul

1
Frequency [rad/s]

0 =
200%%%»%%%%#%&& ]
4001 ; 4
600} T i
-800 e

107 10 10 10' 10
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Case study: Stabilization of a unicycle robot Experiment results

Posture stabilization

© Zero average velocities, good stability.

0.04 0.04
003 | 003 |
002 | 0o |
z 00y - 0.01
R : E
% : § 0 Fi N
E
001y ‘ 001 | Il
002 | oo |
003 | o0 |
-0.04 ; ; ; ; ; 0.04 . . . . :
0 5 015 20 25 30 o 5 0 15 20 25 3
Time[s]
. Time[s]
(a) Roll speed 6 - '
P 1 (a) Pitch speed 6

Figure: Posture Stabilization
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Case study: Stabilization of a unicycle robot Experiment results

Disturbance Attenuation

© Force disturbance applied in the longitudinal and lateral directions at
17 sec and 21 sec.

5 : : : : :
1.5
1
3 3
Z 05 =
= =
&) kS
0
-0.5
-1 L L L L L L L L L
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Time[s] Time[s]
(@) ¢ (b) 62

Figure: Responses to longitudinal force disturbance
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Case study: Stabilization of a unicycle robot Experiment results

Disturbance Attenuation
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Case study: Stabilization of a unicycle robot Experiment results

Running Experiment

© Move a distance of 40 cm.

Figure: Longitudinal running: ¢
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Affine LPV Model

x = A(p(t))x + Bi(p(t))d + Bz(p(t))u (44)
z = G(p(t))x + D11d + Drou (45)
y = Cz(p(t))x + Do1d (46)

© All coefficient matrices are known except the time-varying parameter
p(t), such as A(p) = Ao + X0, pi(t)Ar.
© Each time-varying parameter can be measured online, and in a range

pl(é) € [pim7 piM]a = 17"'7q (47)
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Easy-to-Design Structure of Gain-Scheduled Controller
Gain-Scheduled Controller

AK(p) = Ako + 2?21 p,'(t)AK,-, etc.
@ State vector of the closed-loop system: [x” ; T
© State equation of CLS

£ = Ac( P)€+B()d z = Cc(p)¢ + Dc(p)d (49)
[ )+ 52 )Dk(p)Ca(p) Ba(p)Ck(p) ]
p)C2(p) Ak (p)
By ( B p)D D
[ 1( + 2( )sz(P) 21 ] (50)
«(p) =1 G(p)+ D12DK( )Ca(p) Di2Ck(p) |
<(p) D11 + D12DK( )Do1.
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Easy-to-Design Structure of Gain-Scheduled Controller
Easy-to-Design Structure of Gain-Scheduled Controller

Necessary to ensure the coefficient matrices of CLS are affine functions s.t.
we can reduce the design to vertex conditions.

@ When matrices (Bz(p), Co(p)) both depend on p(t), (Bk, Ckx) must
be constant matrices besides Dy = 0.

@ When (B, () are both constant matrices, all coefficient matrices of
the controller can be affine functions of the scheduling parameter.

@ When only B; is a constant matrix, (Bk, Dk) must be constant
matrices.

@ When only G, is a constant matrix, (Cx, Dx) must be constant
matrices.
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Affine LPV Model Easy-to-Design Structure of Gain-Scheduled Controller
Pros and Cons

Merits of affine model

O A good compatibility with practical systems, greatly simplifies the
numerical design.

© Lyapunov method can be applied and the conservatism is weaker than
the small gain method for parametric uncertainty.

© By the use of common Lyapunov function, it is easy to carry out
multi-objective control design

Shortcoming: all the time-varying parameters must be known, otherwise
the design would be rather difficult.

. December 15,2016 30 / 48



G ST S e
Robust Multi-Objective Control

© New variables in variable change method
A= NAKMT + NBx CoX + YB,CkMT 4+ Y(A + BoDk Go) X
B = NBx + YB:Dk, C= CkM" + DxCoX, D = Dy.

© When the coefficient matrices of CLS are all affine in p(t),

q q
A(p) = Ao + > pilt)Ai, Blp) =Bo + 3 pi(t)Bi - (51)
i=1 i=1

© Design based on the vertex conditions yields the constant matrices
(AiaBiaChDi) (I = 0,1,---,Q)

© From them we can compute the controller. For example, when
(Ba, () are both constant matrices, we have

Dxi = D;, Cki = (C; — DiiCoX)(MN T By = N'(B; — YB,Dk;)

AKi = NT(A, — NBK,'CQX — YBzCK,'MT — Y(A, + BZDKiCZ)X)(MT)T'

(52)
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Affine LPV Model Robust Multi-Objective Control

H Norm Specification

[[Hawlloo < 1if

A0))X + (B2O)(0;)  A(0) + (B2DC2)(6;)

g B1(0;) + (B2D)(0;) D21 0
A6)) YA(QJ) (BC2)(9)) Y31(9 )+ IB%(6’ )D21 0
He 0 0 77’ 0
G (0;)X + D12C(0;)  Ci(0;) + D12(DC2)(6;) D11 + DIZDDZI %/
v e (54)

hold for j =1,..., N.
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Affine LPV Model Robust Multi-Objective Control

Ho> Norm specification

||HZW||1 < yif
[ A(Oj)X + (Bz@)(@j) A(Qj) 0 ]
He A(0)) YA(0;) + (BG)(0;) 0 <0 (55)
Gi(0;)X + D12C(6)) Gi(0)) —31
w o Bi9)" Bi(6)TY
[ B1(9;) X / ] >0 (56)
YB:1(6)) / Y
Tr(W) < 42 (57)

hold for j =1,...,N.
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Affine LPV Model Robust Multi-Objective Control

Regional Pole Placement

Poles of LPV system are placed to LMI region

D={zeC:L+zM+zZM" <0}

if
A0)X + (B.C)(0;) A6;) + (BaDG)(6;)
He<M®[ ey YAl + (BG)O,) D
+L®[>,< {,]<0 (58)
[)f \’,] >0 (59)

hold for j=1,...,N.
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Affine LPV Model Robust Multi-Objective Control
Details

Disk centered at (—c, 0) and with a radius r

He( [ 0 1 ] @ [ A(0;)X + (BC)(0;) A(6)) + (BzDCz)(?j) ] >

0 0 A)) YA(l;) + (BG) (6
+[_Cr fr]@@[)f \I/]<0 (60)
[ )I< :, ] >0 (61)
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Affine LPV Model Robust Multi-Objective Control
Details

Half-Plane R(z) < —o

A(0)X + (B2C)(0;) A(8;) + (B.DG,)(0))
20 [ / ] He [ Ay vA() + BG)©) | <°
(62)
[ o ] >0 (63)
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Affine LPV Model Robust Multi-Objective Control

Details

Sector |argz — 7| < 6

sinf  cosf A(
He( [ —cosf xsinf ] & [

<0
X 1
A

0))X + (B2C)(6;)  A(6)) + (B2DC2)(6))

YA(0;) + (Bcz)(e/)
(64)

(65)
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Case study: Transient stabilization of power system

Case study: Transient stabilization of power system

Transmission line I

Transmission line 11 Infinite

bus
LT Transformer T 9 F

Generator

Figure: Single-machine infinite-bus power system
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Case study: Transient stabilization of power system

Single-machine infinite-bus power system

§ = w — wp (66)
. D
:—PM— P —M(w—wg) (67)
. ]_ Xd ].
El = - E! Xg Vs =V
g 715 + Tooxts cosd + T (68)
ElV. V2 X,
P.=— ®sing — -2 297 Xd i 5, (69)
Xys 2 Xy Xdx

© Transient stability: stability in face of short-circuit fault

© Equilibrium of power system: (dg, wo, E(’]O’ Vo).

© Goal of control: restore the deviated states back to the equilibrium,
i.e. the stabilization of error states

! !
X1:5—(50, X2 = W — wWo, X3:Eq— qo-
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Case study: Transient stabilization of power system LPV model
LPV model

@ Pre-feedback in the field voltage:

o
Vi = V¢ — u Vs cosd (70)
Xay

@ Dynamics of internal transient voltage E,

. 1 1
E’:—{—Xd—ZE,'J—i—Xd dV cosd + Vf} { XdZEI“FVf}

T Tao Xds Xgx Tao Xgx
(71)
@ Two time-varying parameters
ki(sind — sindp) — ko(sin 20 — sin 24,
pr(8) = 1(sind — sin dp) — kx(sin sin 0)’ po(6) = sin 6

0 —do
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Case study: Transient stabilization of power system LPV model
LPV model

@ 2-parameter LPV model

{ X = A(p)X + Bld + Bgu (72)
y = C2X.
0 1 0
Alp) = | api(d) o apa(d) | = Ao+ prAr + pAz. (73)
0 0 Cs

@ u= \_/f—\_/fo

@ Rotor angle ¢ is measured.
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TSR
Multi-Objective Design

© To add damping to the power system, eigenvalues of the LPV system
are placed in a disk region.

© However, the swing of active power and rotor speed does not fade out
quickly enough because of the saturation of field voltage.

© Rotor angle § diverges first which causes the divergence of other
variables. So, the amplitude of § should be minimized.

sup ||z||2§% z=0—-6 = Gx. (74)
ldlz20 1112

© Generalized plant

Alp) | B1 B
Gs)=| G [0 0 (75)
G 0 O
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Case study: Transient stabilization of power system Simulation Results

Simulator

© Dynamics of exciter: a 1lst-order transfer function with a limiter:
Ka

1T+sTa’
© Limit on the field voltage

0.0 [pu] < Vi(t) <5.0 [pu].

T = 0.05, K4 =50

meax 6
Vio + . I_ |
—»=0O— Exciter —7 | Nonlinear Model o)
* mein
%
AVT $ S
Ad 00
Gain-Scheduled [ Am] +1 - [ coO]
|l ———————— O
Controller
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Fault sequence and Parameters

@ Stepl: A fault occurs at t = 0.0 sec;

@ Step2: Fault is cleared by opening the breakers of the faulted line at
tr = 0.168 sec;

@ Step3: System operates in a post-fault state.
© Parameters of the nonlinear power system

D =0.15, M =7.00, Ty = 8.00, Vs =0.995
xg = 1.81, x;, =0.30, x; = 0.5, x;» = 0.93, x7 = 0.15.

© Operating point
dp = 0.8807(= 50.5°), wop = 314, Ec,70 = 1.3228, Vfy = 2.6657.

© Range of §: assumed to be [40°,90°] in the design.
© Disk centered at (—8,,0) and with a radius r = 6.
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Case study: Transient stabilization of power system Simulation Results

Robustness Test

Uncertainty Case
- Nominal Case

5 6 7 8 9 10
T T T T T
=z
8
2
73 4
&
=
“w
I I I I
6 7 8 9 10
T T T T
=
-]
£ 320p s 1
5 - > =
300 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
5 TR L TR A \\ . T T T T T
= [ ] I _ SN
= , “ i ‘\ I T ————
= ! (B \/’
oLl Ll I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
Time [s]

Figure: Robustness test (AV; = 0.1V;, Ax; = 0.1x;, Axy = 0.1x7)
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Case study: Transient stabilization of power system Simulation Results

Robustness Test

— Uncertainty Case
— - Nominal Case

i
1 6 7 8 9 10
‘ ‘ ‘ ‘ ‘
- -
g AL~
2o 1
=
w
-200
1 3 5 6 7 8 9 10
340 : : : : : :
)
=
§ 32001, - i
g =S\
300 ‘
0 1 3 5 6 7 8 9 10
5 [
|
3 o
5:.. V! \\ \
> ,/ \ ] \ \
0 \
0 1 3 6 8 9 10

Figure: Robustness test (AV; = 0.1Vs, Ax, =

Time [s]

—0.1X1_, AXT = —0.1XT)
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Case study: Transient stabilization of power system Simulation Results

© Philosophy of PSS: add a damping signal to the AVR (Automatic
Voltage Regulator) reference input through a phase lead compensator
Q@ PSS controller

sTw 1+5sT1\?
K — K, 7
pss(s) = Ke <1+5Tw> <1+5T2> (76)
Ky =03, T,=01, Ty =01, T,=0.05.

A

- V fmax
O |
Vo &/ 1+sT,

g Vfinin
Vbss
kg (LFSTD) ’ sTw Ao
(1+5sT2) 2 1+sTw
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Case study: Transient stabilization of power system Simulation Results

Comparison with PSS

© Gain-scheduled control damps the oscillation faster than the PSS and
the oscillation amplitude is smaller.

2
a’ \ \, ~
Ny
0 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
200 T T

5 [degrees]

3
=]
£ 320 s S N .
= N
300 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
5 : R A ! ! : !
—_ : | “ : | | | 1 | T N
El | I \ | | | [ | _
= PN IR T R VT I N
o TAY T R B/ B Vi
/A BRI [T
0 1 I I L I I I I I
0 1 2 3 4 5 6 7 8 9 10
Time [s]
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