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IntrodutionIn traditional ontrol theories, no matter the lassial ontrol theoryor the modern ontrol theory, the entral issue is to design a singleontroller apable of ontrolling the plant.Performane optimization problem basially boils down to shaping thelosed-loop transfer matrix. However, in performane optimization itbeomes an obstale to ensure the stability of system.Question: is it possible to desribe all ontrollers that stabilize theplant by a formula with a free parameter?Answer: YES!Parametrization of stabilizing ontrollers is a great progress in ontroltheory. November 11, 2016 3 / 40



Generalized Feedbak Control SystemA motivating exampleReall the 2-mass-spring system (x = [!M � !L℄T )_x = 264 �DLJL kJL 0�1 0 10 � kJM �DMJM 375 x + 24 1JL00 35 d + 24 001JM 35 u (1)yP = [0 0 1℄x :1 Performane spe: suppress the inuene of load torque disturbaned , and ensure that !L traks the referene input r .2 Output to be ontrolled is the speed error r � !L of load, di�erentfrom the measured signal !M3 Torque disturbane d is di�erent from the ontrol input u in theirproperties and loations where they enter the system.4 To optimize the disturbane (or referene traking) response diretlyin ontrol design, new input/output desription is needed.November 11, 2016 4 / 40



Generalized Feedbak Control SystemGeneralized Feedbak Control SystemGeneralized plant G (s): ontains the plant, signals for performaneoptimization and weighting funtion.K : ontrollerInput/output relationships� ẑ(s)ŷ(s) � = G (s) � ŵ(s)û(s) � (2)û(s) = K (s)ŷ(s): (3)GKzy wu� ��-Figure: Generalized feedbak system November 11, 2016 5 / 40



Generalized Feedbak Control SystemGeneralized plantTerms1 Performane output z : output vetor used for speifying the ontrolperformane and model unertainty2 Measured output y : input vetor of the ontroller (for example,outputs of sensors, traking errors, et.)3 Disturbane w : external input vetor used for speifying the ontrolperformane and model unertainty4 Control input u: ommand vetor of atuatorsNot only the design of feedbak ontrol systems, but also the designof feedforward systems like �lters as well as the design of 2-DOFontrol systems an be handled in this framework.GKzy wu� ��-Figure: Generalized feedbak system November 11, 2016 6 / 40



Generalized Feedbak Control SystemGeneralized plant1 State equation 24 _xzy 35 = 24 A B1 B2C1 D11 D12C2 D21 0 3524 xwu 35 (4)2 Partition in aordane with input h wu i and output h zy iG (s) = � G11 G12G21 G22 � = 24 A B1 B2C1 D11 D12C2 D21 0 35 (5)3 Closed-loop transfer matrix of w 7! zHzw (s) = G11 + G12K (I � G22K )�1G21: (6)November 11, 2016 7 / 40



Generalized Feedbak Control System Appliation ExamplesExample: 2-DOF ontrol system1 Plant output yP and ref. input r used independently, instead of theirdi�erene r � yP as in 1-DOF ontrol.2 Capable of ahieving the best traking performane3 K (s) = [KF KB ℄ ontains two bloks KF (s) and KB(s), orrespondingto the feedforward signal r and the feedbak signal yP resp.4 Model of referene input: WR(s)WR --- - -6- -gqq � yPzw r u K �� �-- G wuryPzPK
Figure: Redution of 2-DOF system to generalized feedbak systemNovember 11, 2016 8 / 40



Generalized Feedbak Control System Appliation ExamplesExample: 2-DOF ontrol system1 Performane output: traking error z = r � yP2 Disturbane: impulse input w of WR(s)3 Measured output: � ryP �24 ẑ̂r̂yP 35 = G (s) � ŵ̂u � = 24 WR �PWR 00 P 35� ŵ̂u � (7)û = K (s) � r̂̂yP � = KF r̂ + KB ŷP (8)
WR --- - -6- -gqq � yPzw r u K �� �-- G wuryPzPK

Figure: Redution of 2-DOF system to generalized feedbak systemNovember 11, 2016 9 / 40



Generalized Feedbak Control System Appliation ExamplesExample: 2-mass-spring system_x = Ax + b1d + b2u (9)yP = 2x :1 Spe: load torque disturbane suppression2 Performane output: traking error of load speedz = r � x1 = [�1 0 0℄x + r = 1x + r3 Measured output (2-DOF): [r yP ℄T4 Disturbane: w = [r d ℄T5 Generalized plant: [wT u℄T 7! [z yT ℄TP(s)8>><>>:2664 _xzryP 3775 = 2664 A 0 b1 b21 1 0 00 1 0 02 0 0 0 37752664 xrdu 3775 (10)November 11, 2016 10 / 40



Generalized Feedbak Control System Appliation Examples2-mass-spring system: adding signal models24 zryP 35 = P(s)24 rdu 35 (11)1 Models of ref input and disturbane: WR(s), WD(s)2 Generalized plant of [w1 w2 u℄T 7! [z yT ℄TG (s) = P(s)� 24 WR(s) WD(s) 1 35 : (12)
November 11, 2016 11 / 40



Generalized Feedbak Control System Appliation ExamplesExample: Filter design1 Purpose: estimating a signal q from plant input and output2 State equation of plant _x = Ax + B1n+ B2uyP = Cx + D1n + D2uq = Hx :3 Estimate q: input/output signals (u; yP) �ltered by F (s)4 Rule of �lter design: minimizing the estimation error z = q � qWn 6 - -g-6- q qunw zyP �P F-- -qqFigure: Filtering problem November 11, 2016 12 / 40



Generalized Feedbak Control System Appliation ExamplesExample: Filter design1 Disturbane: (n; u), Performane output: estimation error z ,Measured output: (u; yP), Control input: q2 Generalized plant24 ẑ̂yP̂u 35 = 2664 A B1 B2 0H 0 0 �IC D1 D2 00 0 I 0 377524 n̂̂ûq 35 = P(s)24 n̂̂ûq 35 (13)q̂ = F (s) � ŷP̂u � : (14)
Wn 6 - -g-6- q qunw zyP �P F-- -qqFigure: Filtering problem November 11, 2016 13 / 40



Generalized Feedbak Control System Appliation ExamplesFilter design: adding noise model1 Colored noise n: n̂(s) = Wn(s)ŵ(s) and w is a white noise2 Generalized plant with weighting funtion24 ẑ̂yP̂u 35 = G 24 ŵ̂ûq 35 ; G = P 24 Wn I I 35 : (15)
Wn 6 - -g-6- q qunw zyP �P F-- -qqFigure: Filtering problem November 11, 2016 14 / 40



Parametrization of Controllers Parametrization: Stable Plant CaseStable Plant CaseTheorem 1Let G (s) be stable. Then, all stabilizing ontrollers are parameterized byK (s) = Q(I + G22Q)�1: (16)Q(s): arbitrary stable matrix with ompatible dimension.(Proof) We need only prove that K (s) stabilizes G22(s). That is,(I � G22K )�1; K (I � G22K )�1; G22K (I � G22K )�1; (I � G22K )�1G22are all stable. These four transfer matries are equal toI + G22Q; Q; G22Q; (I + G22Q)G22and are ertainly stable.Conversely, when K (s) is a stabilizing ontroller, K (I �G22K )�1 := Q(s) must bestable. Solving for K (s), we see that it is desribed by K (s) = Q(I +G22Q)�1. �November 11, 2016 15 / 40



Parametrization of Controllers Parametrization: Stable Plant CaseCase of G22(s) = �P(s)Corollary 1Assume that the plant P(s) is stable. Then all ontrollers that stabilizethe losed-loop system are parameterized byK (s) = Q(I � PQ)�1:Q(s): any stable matrix with appropriate dimension.�r yPKe uFigure: 1-DOF feedbak system November 11, 2016 16 / 40



Parametrization of Controllers Parametrization: Stable Plant CaseExample 1Consider the SISO feedbak system where P(s) is stable. Find allontrollers that enable the asymptoti traking of step ref input r .(Solution) Laplae transform of traking errorê(s) = r̂(s)� ŷ(s) = 11 + PK r̂(s) = 11 + PK 1s :Substitution of K (s) = Q=(1� PQ) leads to ê(s) = (1� PQ)1s .e(1) = lims!0 sê(s) = 1� P(0)Q(0) = 0) P(0) 6= 0; Q(0) = 1P(0) :Required ontrollers:�K (s) = Q1� PQ ���Q is stable and Q(0) = 1P(0)� :K (s) ontains at least one integrator 1=s sineK (0) = lims!0 Q1� PQ !1: November 11, 2016 17 / 40



Parametrization of Controllers Parametrization: Stable Plant Case
For instane, for the plantP(s) = 1(s + 1)(s + 2) ;one of the ontrollers is obtained asK (s) = 2(s + 1)(s + 2)s(s + 3)when the free parameter is seleted as Q = 1=P(0) = 2. r
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Parametrization of Controllers Parametrization: Stable Plant CaseExample 2Consider the SISO system. Assume that P(s) is stable and P(0) 6= 0. Findall ontrollers that are apable of asymptoti rejetion of step disturbaned. Further, for P(s) = 1=(s + 1), selet the free parameter asQ(s) = P�1(s) k1+�s (� > 0) and design a ontroller satisfying kyk2 � 0:1.duK P y� Figure: Disturbane ontrol
November 11, 2016 19 / 40



Parametrization of Controllers Parametrization: Stable Plant CaseduK P y� Figure: Disturbane ontrol(Solution) Disturbane responseŷ(s) = P1 + PK d̂(s) = P1 + PK 1s :K = Q=(1� PQ) yields ŷ(s) = P(1� PQ)1s : (17)All ontrollers guaranteeing zero steady-state output�K = Q1� PQ : Q(s) is stable and Q(0) = 1P(0)� (18)Eah ontroller K (s) ontains at least one integrator 1=s.November 11, 2016 20 / 40



Parametrization of Controllers Parametrization: Stable Plant Casekyk2 is bounded only if y(1) = 0. So, k = Q(0) = 1=P(0) = 1.ŷ(s) = �(s + 1)(�s + 1) = �1� � � 1s + 1 � 1s + 1=��) y(t) = �1� �(e�t � e�t=�); t � 0So, kyk22 = Z 10 y2(t)dt = �22(1 + �) � 0:12 ) �2 � 0:02�� 0:02 � 0:Its solution is �0:131 � � � 0:151. Considering the stability ondition� > 0, the �nal solution is 0 < � � 0:151.Obtained PI ompensator:K (s) = s + 1�s = 1� + 1�s : November 11, 2016 21 / 40



Parametrization of Controllers General CaseGeneral CaseTheorem 2Suppose that (A;B2) is stabilizable and (C2;A) is detetable. Let A+B2Fand A+ LC2 be stable. Then, all stabilizing ontrollers are given by thetransfer matrix F`(M;Q) from y to u, where Q(s) is any stable matrixwith an appropriate dimension.M(s) = 24 A+ B2F + LC2 �L B2F 0 I�C2 I 0 35 :MQu y� ��-Figure: Parametrization of stabilizing ontrollersNovember 11, 2016 22 / 40



Parametrization of Controllers General CaseOutline of proofSuÆieny: Set Q(s) = (AQ ;BQ ;CQ ;DQ).K (s) = (AK ;BK ;CK ;DK )= 24 A+ B2F + LC2 � B2DQC2 B2CQ B2DQCQ � L�BQC2 AQ BQF � DQC2 CQ DQ 35 (19)A-matrix of losed-loop system HzwA = 24 A+ B2DQC2 B2F � B2DQC2 B2CQB2DQC2 � LC2 A+ B2F + LC2 � B2DQC2 B2CQBQC2 �BQC2 AQ 35 (20)A is similar to the blok triangular matrix:24 A+ B2F B2CQ B2F � B2DQC20 AQ �BQC20 0 A+ LC2 35 (21)This matrix obviously is stable. November 11, 2016 23 / 40



Parametrization of Controllers General CaseOutline of proofNeessity: we need just prove that any stabilizing ontroller K (s) an bedesribed as K (s) = F`(M;Q0) with a stable Q0(s).MQ0 �� �- y��u M̂K �� �- �uy�
Input/output relation� û̂� � = M(s) � ŷ̂� � ; û = K (s)ŷ ; � �̂̂y � = M̂(s) � �̂̂u � ; �̂ = Q0(s)�̂:Relationship between M̂ and MM̂(s) = � II �M�1 � II � : November 11, 2016 24 / 40



Parametrization of Controllers General CaseOutline of proofState realization of M̂(s):M̂(s) = 24 A �L B2�F 0 IC2 I 0 35 :M̂(s) and G (s) share the same (2, 2) blok, namelyM̂22(s) = G22(s) = C2(sI � A)�1B2. So they both are stabilized by K (s).Therefore, Q0(s) := F`(M̂;K ) is stable.MQ0 �� �- y��u M̂K �� �- �uy�
Figure: Input/output relations of K = F`(M ;Q0) and Q0 = F`(M̂;K )November 11, 2016 25 / 40



Parametrization of Controllers General CaseStabilization of integrator P(s) = 1=s := G22A state realizations is (0; 1; 1; 0). When F = L = �1 are hosen,A+ B2F = A+ LC2 = �1 are stable. From the oeÆient matrixM(s) = 24 �2 1 1�1 0 1�1 1 0 35 = 1s + 2 � �1 s + 1s + 1 �1 � ;we get K (s) = � 1s + 2 +�s + 1s + 2�2Q(s)�1 + 1s + 2Q(s)��1 :When Q(s) = 0, the ontroller is K (s) = �1=(s + 2).Charateristi polynomial of CLS is equal to s(s + 2) + 1 = (s + 1)2, soCLS is stable. November 11, 2016 26 / 40



Youla ParametrizationYoula Parametrization24 A+ B2F B2 �LF I 0C2 0 I 35 := � D(s) �Y (s)N(s) �X (s) � (22)24 A+ LC2 �B2 LF I 0C2 0 I 35 := � � ~X (s) ~Y (s)�~N(s) ~D(s) � (23)Theorem 3Suppose that (A;B2) is stabilizable and (C2;A) is detetable, A+ B2Fand A+ LC2 are stable. Then,(1) G22(s) = N(s)D�1(s) = ~D�1(s) ~N(s);(2) All ontrollers are parameterized byK (s) = ( ~X �Q ~N)�1( ~Y �Q ~D) = (Y � DQ)(X � NQ)�1 (24)Q(s): stable transfer matrix with appropriate dimension.November 11, 2016 27 / 40



Struture of Closed-Loop System AÆne Struture in Controller ParameterAÆne Struture in Controller ParameterController K (s) � _xKu � = � AK BKCK DK � � xKy � : (25)Closed-loop system24 _x_xKz 35 = � A BC D �24 xxKw 35 (26)� A BC D � = 24 A+ B2DKC2 B2CK B1 + B2DKD21BKC2 AK BKD21C1 + D12DKC2 D12CK D11 + D12DKD21 35 : (27)November 11, 2016 28 / 40



Struture of Closed-Loop System AÆne Struture in Controller ParameterAÆne Struture in Controller ParameterRelationship between the oeÆient matries of losed-loop system andontrollerA = � A+ B2DKC2 B2CKBKC2 AK �= � A 00 0 �+ � B2DKC2 B2CKBKC2 AK �= � A 00 0 �+ � B2 00 I � � DK CKBK AK � � C2 00 I � :A is an aÆne funtion of the oeÆient matrix of ontroller:K = � DK CKBK AK � : (28)November 11, 2016 29 / 40



Struture of Closed-Loop System AÆne Struture in Controller ParameterAÆne Struture in Controller Parameter� A BC D � = � A B1C 1 D11 �+ � B2D12 �K[C 2; D21℄ (29)24 A B1 B2C 1 D11 D12C 2 D21 35 = 266664 A 0 B1 B2 00 0 0 0 IC1 0 D11 D12 0C2 0 D210 I 0
377775 : (30)1 Closed-loop transfer matrix is a nonlinear funtion of the ontroller.Meanwhile, in state spae their oeÆient matries have an aÆnerelation whih is muh simpler.2 It is beause of this aÆne feature that the state spae method ise�etive in various kinds of optimal ontrol designs.3 In the H1 ontrol and multiple-objetive ontrol, this aÆnerelationship plays a fundamental role in deriving the LMI solutions.November 11, 2016 30 / 40



Struture of Closed-Loop System AÆne Struture in Free ParameterAÆne Struture in Free Parameter NQ� �wz�� uy w
QM
Gz

Figure: Closed-loop systemSome notations: AF := A+ B2F ; CF := C1 + D12FAL := A+ LC2; BL := B1 + LD21 (31)Â := A+ B2F + LC2: November 11, 2016 31 / 40



Struture of Closed-Loop System AÆne Struture in Free ParameterAÆne Struture in Free ParameterClosed-loop transfer matrix w 7! z :Hzw (s) = F`(G ;K ) = F`(G ;F`(M;Q)) = F`(N;Q)N(s) = � N11 N12N21 N22 � = 2664 AF �B2F B1 B20 AL BL 0CF �D12F D11 D120 C2 D21 0 3775 ; N22(s) = 0:(32)Eventually, the losed-loop transfer matrix beomesHzw (s) = N11(s) + N12(s)Q(s)N21(s): (33)Namely, Hzw (s) is an aÆne funtion of Q(s). This aÆne struture will beused in solving the H2 optimal ontrol problem. November 11, 2016 32 / 40



2-Degree-of-Freedom System Struture of 2-Degree-of-Freedom SystemsStruture of 2-Degree-of-Freedom SystemsK Pr yPu e�d
Plant dynamis _x = Ax + Hd + Bu (34)yP = Cx (35)Performane output e(t) = r(t)� yP(t) (36)Disturbane d may enter the losed-loop system at a loation ofdi�erent from ontrol input u (for instane, 2-mass-spring system), sotheir oeÆient matries are set di�erently. November 11, 2016 33 / 40



2-Degree-of-Freedom System Struture of 2-Degree-of-Freedom SystemsStruture of 2-Degree-of-Freedom SystemsTransfer matries Pu(s) : u 7! yP , Pd (s) : d 7! yPPu(s) = C (sI � A)�1B ; Pd (s) = C (sI � A)�1H (37)Partition of free parameter Q(s)Q(s) = [QF (s) QB(s)℄ (38)Ref traking Ter , disturbane suppression TedTer (s) =I + N12(s)QF (s) (39)Ted (s) =N12(s)QB(s)C (sI � AL)�1H� N12(s)F (sI � AL)�1H � C (sI � AF )�1H: (40)Ter (s) / QF (s), Ted (s) / QB(s)Ter (s) and Ted (s) an be designed independently.Stable plant aseTer (s) = I � Pu(s)QF (s); Ted (s) = �Pu(s)QB(s)Pd (s)� Pd (s)(41)November 11, 2016 34 / 40



2-Degree-of-Freedom System Struture of 2-Degree-of-Freedom SystemsDesign example1st-order system _x = �2x + u + d ; yP = 2xRef input r and the disturbane d are unit step signal 1(t).Control spe: redue the referene traking error e(t)Plant is stable and Pu(s) = Pd (s) = 2s + 2 :Free parameters hosen asQF (s) = P�1u (s) 1�s + 1 ; QB(s) = �P�1u (s) 1�s + 1 ; �; � > 0)Ter (s) = 1� PuQF = ss + 1=�Ted (s) = �(PuQB + 1)Pd = � 2s(s + 2)(s + 1=�) :November 11, 2016 35 / 40



2-Degree-of-Freedom System Struture of 2-Degree-of-Freedom SystemsDesign exampleTraking errorê(s) = Ter r̂ + Ted d̂ = 1s + 1=� � 2(s + 2)(s + 1=�)) e(t) = e�t=� � 2�1� 2� �e�2t � e�t=�� : (42)Traking error an be redued by lowering �; �ControllerK (s) = Q1 +QG22 = [QF QB ℄1 +QBPu = �s + 1�s � s + 22(�s + 1) � s + 22(�s + 1)� :Low frequeny gain of K (s) inreases when � is redued, while � doesnot a�et the low frequeny gain of K (s).To realize signal traking using an input as small as possible, weshould better mainly use feedforward ontrol (that is, lowering � only).Feedbak should be strengthened only when the disturbane is strong(lowering both � and �). November 11, 2016 36 / 40



2-Degree-of-Freedom System Implementation of 2-Degree-of-Freedom ControlImplementation 1K := [KF � KB ℄ = [QF �QB ℄1 + [QF �QB ℄G22 = [QF �QB ℄1� PQB : (43)QF QB P0 P yPu dr
�Feature: input of QB(s) beomes zero when P = P0 and d(t) = 0.So feedbak ontroller KB(s) is not ativated.Transfer funtion r 7! yPHyP r (s) = P(s)QF (s) November 11, 2016 37 / 40



2-Degree-of-Freedom System Implementation of 2-Degree-of-Freedom ControlImplementation 1QF QB P0 P yPu dr
�Model-mathing: let losed-loop transfer funtion math or lose to areferene model M(s) with good performaneFeedforward ompensator QFPQF = M ) QF (s) = M(s)P(s) (44)QF must be stable. So when the plant P(s) have unstable zeros, themodel M(s) must also ontain the same zeros. That is, for anon-minimum phase plant, the output response annot be improvedarbitrarily. November 11, 2016 38 / 40



2-Degree-of-Freedom System Implementation of 2-Degree-of-Freedom ControlImplementation 2Physial impliation: feedbak ontroller is ativated when output ofatual plant is di�erent from and that of ref model M(s); when theyare the same, the feedbak ontroller stops working.MPM KB P yPu dr
�Figure: Another Form of 2-DOF Systems November 11, 2016 39 / 40



2-Degree-of-Freedom System Implementation of 2-Degree-of-Freedom ControlExample: plant with low dampingP(s) = 4s2 + s + 4 (� = 14 ; !n = 2):1 Ref model with a strengthened damping:M(s) = 4s2 + 3s + 4 (�� = 0:75; !�n = 2):2 Feedforward ompensatorQF (s) = MP = s2 + s + 4s2 + 3s + 4 :3 Feedbak ontrollerQB(s) = P�1 1(�s + 1)2 ) KB(s) = s2 + s + 42�2s(s + 2=�) :4 Sensitivity funtionS(s) = 11 + PKB = 1� PQB = 1� 1(�s + 1)2 = �s(�s + 2)(�s + 1)2November 11, 2016 40 / 40
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